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Abstract. This article, mainly targeted to practitioners, illustrates practical issues
that may arise when applying MCMC technics to a mixture of distributions model
on real data. This data is provided by coffee manufacturer to determine specifica-
tions for soluble coffee. Assuming a known number of components, parameters of
each component are estimated using the Gibbs sampler and specifications are de-
rived as the 99% quantile of the first distribution. Convergence and label-switching
are discussed. Determination of the number of components is also considered, via
model selection using the Bayes Factors.
Keywords: MCMC, Mixture, Gibbs Sampler, Label switching, Bayes factors.

1 The Problem and its Modelling

Following an international agreement, a commercial product sold as pure sol-
uble coffee must have been manufactured using green coffee only. However, in
a minority of cases, economic adulteration of soluble coffee has been observed
in some countries. As a matter of fact, few commercial soluble coffees have
been shown to be adulterated with coffee husks/parchments, cereals, and
some other plant extracts. In such cases, glucose and xylose contents have
proven to be the most discriminant indicators to detect the adulteration. For
pure soluble coffee, their concentration are low whereas they become high
in case of adulteration. Provided a set of 1002 soluble coffee samples, on
which both glucose and xylose concentrations have been measured, we are
interested in determining:
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• the number K of kinds of production, and their parameters (mean, stan-
dard deviation) : (K − 1) different frauds, plus one for pure coffee;

• the proportion of each population;
• from the first population and its corresponding characteristics, the spec-

ifications within which a soluble coffee can be considered as pure coffee ?

In this article, we only consider the univariate case. Therefore, glucose
and xylose concentrations are considered as separate quantities. The ap-
proach could, in a further work, be generalised to the bivariate case.

In the univariate case, the observed distribution of the glucose (resp. the
xylose) measured on the 1002 coffee samples is modeled as a mixture of
normal distributions. We consider that the T = 1002 observations from the
sample come from K distinct populations (1 pure and (K − 1) adulterated),
each population k ∈ {1, . . . , K} following a normal distribution of density fk

and of parameters θk = (µk, σ2
k).

Therefore, the likelihood of an observation xi, 1 ≤ i ≤ T is:

[xi|θ, π] =

K
∑

k=1

πkfk(xi|θk),

where fk(•|θk) is the probability density function (pdf) of a normal distribu-
tion with parameters θk and πk is the probability of belonging to population
k, such that

∑K

k=1 πk = 1. The parameters of interest are θ = (θ1, . . . , θK)
and π = (π1, . . . , πK). The choice of the value of K will be mentioned in
section 6.

Other parametrisations for mixtures of normal distributions have been
published: interested readers can refer to Robert in [Droesbeke et al., 2002],
or in [Marin et al., to appear]. However, this parametrization lacks the
natural physical interpretation of the parameters achieved with the actual
one.

In the bayesian paradigm, parameters θk of each distribution are consid-
ered as random variables, having their own distribution. Starting from an
initial knowledge about a phenomena described in the prior distribution of
the parameters (θ, π), the Bayes formula enables to update this information
by adding the information brought by the data provided the model defini-
tion. The prior distribution, and its parameters, called hyperparameters, are
a way to take mathematically into account prior knowledge of the experts of
the field, if available (f.i., the potential informations held by the chemists).

To ease the reading, we use throughout the article the notation [.] intro-
duced by [Gelfand et al., 1990] to denote any pdf. In this notation, [θ, π]
denotes the prior distribution for (θ, π), [y|θ, π] the likelihood and [θ|π, x]
is the conditional pdf of θ.

Finally, the eventual goal of this application is to estimate a function
of the parameters F (θ, π) where F can be either the identity function
for each parameter or a quantile function. This is generally assessed by
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E[F (θ, π)|x] =
∫

F (θ, π)[θ, π|x]d(θ, π), where [θ, π|x] is the pdf of the pos-

terior distribution, i.e. the distribution of the parameters conditionnaly to
the observations x = (x1, . . . , xT ). This pdf is computed via the Bayes for-
mula : [θ, π|x] = [x|θ, π][θ, π]/[x], where [x] is the prior distribution of the
observations, which can be taken as constant and thus ignored.

The first question is therefore to choose the prior distribution of the
parameters, [θ, π].

Before going any further, we have to mention that a hidden variable
zi, i ∈ {1, . . . , T} has been introduced in the model mentioned above to
ease its Bayesian analysis (see below). This variable is not observed and thus
named latent variable. zi ∈ {1, . . . , K} indicates the original population of the
observation xi, and z = (z1, . . . , zT ). The zi are i.i.d, with [zi = k|π] = πk,
[xi|θ, π, zi = k] = N (x|µk, σ2

k), where N (•|µ, σ2) denotes the univariate nor-
mal pdf. Analysis of mixture distributions by MCMC methods have been
the subject of many publications, for example [Diebolt and Robert, 1990],
[Richardson and Green, 1997], [Stephens, 1997], [Marin et al., to appear].

2 Choosing the Prior and its Hyperparameters

As part of the Bayesian analysis, prior definition is the first step to go
through. Several cases may arise:

• either the experts of the field have valuable information about the distri-
bution of the parameters that should be taken into account : for example,
they approximately know what the mean of each component should be.

• or they do not have any information at all - or this information should
be ignored, in order to check their results by an objective analysis. Two
approaches can be chosen by the statistician :
– using empirical prior, i.e. hyperparameters built upon the data.
– using non-informative prior, i.e. prior carrying no information at all.

This is somewhat hard to achieve, because purely non-informative
prior can be improper (for example, uniform distribution on the
whole space) and cause troubles. We can also use poorly informa-
tive prior, for example very dispersed normal distributions.

Moreover, the prior is often chosen in a closed-by-sampling or conjugate prior

family, i.e. such that conditionning by the sample (passing from the prior

to the posterior distribution) only result in a change of the hyperparameters,
not in a change of family. This simplifies implementation.

Here we have chosen the following model, that often arises, because each
distribution belongs to a closed-by-sampling family :

π = (π1, . . . , πK) sim Di(a1, . . . , aK)
µk|σ2

k sim N (mk, σ2
k/ck)

σ−2
k sim IG(αk, βk)
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where Di is a Dirichlet distribution, and IG an Inverse Gamma. Thus,
the hyperparameters are ak, mk, ck, αk, and βk, k ∈ {1, . . . , K}. For non-
informative prior, we should have a Uniform distribution for π, which can be
obtained with a1 = . . . = aK = 1, a Dirac pdf for σ2

k, which can be obtained
with limit values for αk and βk, and a unary density on R for each µk, which
is more difficult to implement with limit values on ck.

In practice, non-informative prior is not so easy to deal with : for instance,
when programming the algorithm with Matlab, it is not always possible to
deal with infinite values of the parameters, of with such particular densities.
Therefore, poorly informative prior, or even empirical prior, should be used.
This is what we have done here.

We have chosen : ∀ k ∈ {1, . . . , K}, πk = 1, ck = 1, mk = x̄ (empirical

mean), αk = K, and βk = (T (K − 1))−1
∑T

i=1(xi − x̄)2. Thus, the propor-
tions of each component are non-informative, the means of the µk are equal
to the empirical mean of the sample, and the means of σ2

k is equal to the
empirical variance (E[σ2

k] = (αk−1)βk for Inverse Gamma). For reasons that
should become clear further (related to label-switching problems and Bayes
factors), we have chosen the same hyperparameters for each components: this
maintains the symmetry of the density (and therefore of the likelihood).

This part of the Bayesian analysis is certainly the most subjective. The
choice of prior is clearly the weakest point of the analysis, and the more
arguable and argued. Many discussions exist about it, and each approach
has its pros and cons. The approach chosen here is neither the most rigorous
one, nor the purest, but allows easy implementation. In order to overcome
these discussions, a sensitivity analysis needs to be done after the study.
Further discussions about the choice of the prior can be found in almost any
reference: see for example [Droesbeke et al., 2002], [Gelman et al., 2003].

3 Gibbs Sampling, Complete Conditionnal

distributions

The evaluation of the expectation is hard to achieve, either analitically or
numerically (due either to its complex expression or to its highly multidi-
mensional nature). MCMC methods are a good way to solve this problem.
We recall that the principle of Monte-Carlo methods is to generate N in-
dependent realizations (θ(i), π(i)) of random variables following the poste-
rior distribution [θ, π|x], and to approximate :

∫

F (θ, π)[θ, π|x]d(θ, π) ≈
∑N

i=1 F (θ(i), π(i))/N. Here the function F is either the identity function to
estimate the parameters or the 99%-quantile function of the first component
of the mixture (i.e. the component corresponding to pure coffee powder, with-
out any kind of fraud). In this last case, in order to be the most conservative

possible, the empirical 95%-quantile of the sampled values F (θ(i), π(i)), in-
stead of their empirical mean, has been used.
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Given the conditional structure of the model of interest, the Gibbs sam-
pler has been used to generate a N-sample from the posterior distribution.
Quite straightforward to implement, it relies on the availability of all complete

conditional distributions. Let θ = (θ1, . . . , θn) the vector of the parameters
of the model. Here, we have θ = (θ, π) = (µ1, σ

2
1 , . . . , µK , σ2

K , π1, . . . , πK).
Let θ(i) = (θ1, . . . , θi−1, θi+1, . . . , θn) the vector θ without its ith component.
The density of the complete conditional distribution of θi is [θi|θ(i), x]. Let
us assume that we know its closed form for all i ∈ {1, . . . , n}, wich is often

the case. Let us also take arbitrary initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ). The

Gibbs sampler’s algorithm consists in successively sampling:

• θ
(i)
1 from

[

θ1|θ
(i−1)
2 , θ

(i−1)
3 , θ

(i−1)
4 , . . . , θ

(i−1)
n

]

• θ
(i)
2 from

[

θ2|θ
(i)
1 , θ

(i−1)
3 , θ

(i−1)
4 , . . . , θ

(i−1)
n

]

• · · ·
• θ

(i)
n from

[

θn|θ
(i)
1 , θ

(i)
2 , θ

(i)
3 , . . . , θ

(i)
n−1

]

for i ∈ {1, . . . , N + M}, where M is a number of iterations that will be
discarded. They are called “burn-in” iterations, and correspond to the time

before convergence. It can be shown that θ
(M) = (θ

(M)
1 , . . . , θ

(M)
n ) converges

in distribution to the posterior joint distribution [θ1, . . . , θn|x]. The following
N values are then considered as a sample from this distribution, and can be
used to approximate F (θ) by empirical mean, as mentioned above.

In our model with the above assumptions, we have the following complete
conditional distributions (in order to simplify the notations, the list of all
parameters but θ are figured by (θ)):

zi|(zi), x sim Mu(π1, . . . πK)
π|(π), x sim Di(a1 + n1, . . . , aK + nK), where nk =

∑

i:zi=k 1

µk|(µk), x sim N (mkck+sk

ck+nk

,
σ2

k

nk+ck

)

σ−2
k |(σ2

k), x sim IG
(

αk + nk+1
2 , βk + 1

2

(

ck(µk − mk)2 +
∑

i:zi=k(xk − µk)2
))

We actually run the sampler with M = 5000 and N = 5000. Convergence
issues and choice of M are discussed in the next section. Metropolis Hastings
algorithm details, as well as variants of the Gibbs Sampler can be found
in [Droesbeke et al., 2002], or in [Richardson and Green, 1997] or also in
[Marin et al., to appear] for an approach more directly linked to mixture of
distributions.

4 Convergence Issues

Since the first historically convergence diagnosis (known as the “thick pen”
one, [Gelfand et al., 1990]), there exist two main kinds of methods to de-
termine whether the sampler has reached convergence or not, i.e. whether
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the values from the current generation can be considered as a sample of the
target distribution. Two kinds of diagnoses can be considered depending on
the number of chains run for carrying out the diagnosis: we consider either
the single or multi-chain, where the single ones are rejected by [Gelman and
Rubin, 1992b]. We then consider only the multi-chain procedure.

The principle of muti-chains diagnoses is to run multiple independent
chains from very different starting points, and to test whether the last values
of each chain come from the same distribution or not. If that is the case, we
can assume that convergence has been reached. [Gelman and Rubin, 1992a]
and [Gelman and Rubin, 1992b], have proposed a method which is often
used, based on the comparison of within and between-chains variances. At
the beginning of the sampling, the chains are much influenced by the starting
point, and the between-chains variance is high above the within-chain one.
When each chain has reached the target distribution, the ratio between within
and between-chain variance should be around 1. This method has been much
improved since then, and some more subtel tests are avalaible, though not
implemented here.

If we note xi,j the ith value of chain j, i ∈ {1, . . . , M +N}, j ∈ {1, . . . , J},
we compute the empirical within-chain and between-chain (respectively W
and B) as follows

W = 1
m

∑m

j=1
1

n−1

∑n

i=1 (xi,j − x.,j)
2

B = n
m−1

∑m

j=1 (x.,j − x.,.)
2 with

x.,j = 1
n

∑n

i=1 xi,j

x.,. = 1
m

∑m

j=1 x.,j .
.

The quantity σ̂2
+ = n−1

n
W + 1

n
B can be interpreted as an estimate of the

variance of the target distribution. Gelman and Rubin show that, when the
initial values of the J chains are chosen “sufficiently different”, σ̂2

+ systemat-
ically overestimates the variance while chains have not reached convergence.

Convergence diagnosis is thus based on the statistic
√

R̂GR =
√

σ̂2
+/W which

tends to 1 when n → +∞. Practically, convergence is considered as achieved

when
√

R̂GR < 1, 2. In a multiple parameters case, this diagnosis must
be carried out for each parameter separately, the overall convergence being
attained when all parameters have converged to its target distribution.

This method, quite straightforward to implement, has proven to be effi-
cient in many cases. However, due to the label-switching issue (see below),
this method appeared to be inefficient in our case. Future developments of
this study will see this point worked through.

5 The Label Switching Problem

A particularity of the mixture of distributions is that the likelihood and the
joint posterior pdf (which is the target distribution of the Gibbs Sampler)
is symmetrical, i.e. invariant by permutation of the components. Therefore,
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this last pdf has up to K! duplications of each mode, and the sampler can
move from one mode to another freely, thus permuting the components.

The absence of label-switching means that the sampler is stuck in a local
mode, maybe because modes are well separated (e.g. when K is very low).
The space of parameters is thus not completely explored, which is dangerous.

When estimating a function F (θ, π) which is also invariant by permu-
tation of the components (e.g. estimating the pdf at a given point), label-
switching is not a problem. But when trying to estimate the parameters of
each component, this label-switching has to be undone ([Stephens, 2000b]).
Two approaches can be foreseen: imposing an identification constraint dur-
ing the sampling, or post-processing the generated N-sample to undo the
permutation.

The first solution consists of constraining the exploration of the space
of parameters by the sampler, which alters the results, see [Celeux et al.,
2000], [Marin et al., to appear], [Stephens, 2000b]. Forcing the prior to be
highly separable (using much different hyperparameters for components) is
not a good idea neither : label-switching arises anyway, and the resulting
lack of correspondance between the prior and the component would corrupt
any further use of the prior (such as Bayes factor).

We applied here the second solution, i.e. the post-processing. Ordering
on µk, or on σ2

k, or on πk is not a good idea. Some components may be
close in mean but not in variance, and vice-versa. Some methods use the
Kullback-Leibler “distance” and clustering algorithms (e.g. K-means with
K! classes) to determine to which mode (i.e. permutation) belongs each of
the sampled vectors of parameters. The reader is invited to read the three
references above for more details.

It has to be noted that label-switching is incompatible with convergence
diagnoses mentionned in section 4 : comparing the variance between chains is
meaningless when components can swap ! Moreover, clustering assumes that
convergence has been reached, it would thus be non-sense to use variance-
based diagnoses on post-processed samples.

6 Choosing a model : Bayes Factors

Until now, we have worked with a given number K of components. The
question is now to choose between different models. Let M = {M1, . . . , MK}
be a finite ensemble of possible models (each one with k components, up to
K, K = 7 in our application) to explain the observations xi, parametrized by
θ. The best model within the K possible is the one with the highest posterior

probability.

The posterior probability of model Mk is calculated via Bayes formula
as follows: [Mk|x] = ([Mk][x|Mk]) /

(
∑

Mk∈M
[Mk][x|Mk]

)

, where [Mk] is
an prior probability of Mk, with

∑

Mk∈M
[Mk] = 1 (e.g. ∀ k, [Mk] =
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1/K), and [x|Mk], defined by [x|Mk] =
∫

[x|θk][θk] dθk is the prior predictive
distribution of x under model Mk.

Let us consider M1 and M2. The ratio between posterior probabilities
[M2|x]/[M1|x] = ([M2][x|M2]) / ([M1][x|M1]) is a posterior bet in favor of
M2 compared to M1. The ratio B21 = [x|M2]/[x|M1], modifying the prior

bet [M2]/[M1] is called Bayes factor of model M2 relatively to model M1.
Bayes factors are the basis of bayesian model selection. A ratio close to 1

means that both models equivalently explain the observations, whereas much
higher than 1 indicate that the model in the numerator is preferable. [Kass
and Raftery, 1995] suggest a scale based on 2 ln(B21), which can be valid for
a first indication, but is far from being general.

The evaluation of Bayes factors, and specially of [x] = [x|Mk] =
∫

[x|θk]×
[θk] dθk, relies on the Gibbs outputs. [x] could be estimated by Monte-Carlo
sum on the likelihood with values sampled from the prior distribution of
θ. Nevertheless, prior distributions are often very flat, much more than the
posterior ones, and such method would not be much significant. Newton and
Raftery advises to use another method, based on samples from the posterior

distribution [θ|x]. Bayes formula gives: [θ]/[x] = [θ|x]/[x|θ]. By integration
on θ, we have: [x]−1 =

∫

([θ|x]/[x|θ]) dθ, and thus can estimate [x]−1 by
Monte-Carlo methods, sampling from [θ|x], or more precisely continuing the
Gibbs Sampler, setting each parameter one after the other to its estimate, as
described in [Chib, 1995] and [Carlin and Chib, 1995].

Again, label-switching is a problem: the estimation by Monte-Carlo meth-
od involves here a function which is not invariant by permutation of the
component, so permutations have to be undone. That’s why, in such cases,
other methods such as reversible jump or birth-death processes are preferred
(see [Stephens, 2000a]).

7 Possible Improvements, Future Work

This study is an illustration of practical issues encountered when applying
MCMC technics for the Bayesian Analysis of the mixture of distribution
model. Some issues have already addressed in the literature (label-switching)
but without clear and straightforward solutions and some others are pend-
ing (prior definition). Even though, the methods presented here are quite
straightforward to implement, and thus can be easily used in a first approach
of the problem.

The following conclusions were attained: due to the recurrent problem of
label-switching (caused by the intrisic structure of the dataset), immediate
interpretation and efficient model selection (we can not actually choose be-
tween 3, 4, or 5 components) were not carried out. Further work in terms of
model selection must be definitely done. EM algorithm (using Mixmod soft-
ware, developed by INRIA’s IS2 team) has been used but gave completely
different results, incoherent with chemists’ interpretations: the algorithm
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seems trapped in local optimum. MCMC methods are therefore concluded
more satisfactory: they at least give meaningfull results.

The following points have to be worked further: the hypothesis of normal-
ity of the components (log-normality would seem more coherent), the choice
of the prior (less informative prior, maybe with a learning sub-sample in
order to create more informative prior that can be used in Bayes factor). A
sensitivity analysis is therefore needed to further validate the approach and
assess the influence of each assumptions. The question of the convergence
is a tricky point to address, provided the label-swistching issue. No rigor-
ous diagnosis has been envisaged: birth-death processes or reversible jump
methods need to be considered.

This is an illustration of the difficulties that praticians may face before
benefiting from the powerful tools tha are MCMC Bayesian methods.
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Bayésiennes en statistique. Technip, 2002.
[Gelfand et al., 1990]A.E. Gelfand, S.E. Hills, A. Rancine-Poon, and A.F.M. Smith.

Illustration of bayesian inference in normal data models using gibbs sampling.
J. Amer. Stat. Assoc, 85:972–985, 1990.

[Gelman and Rubin, 1992a]A. Gelman and D.B. Rubin. Inference from iterative
simulation using multiple sequence (with discussion). Statistical Science, 7:457–
511, 1992.

[Gelman and Rubin, 1992b]A. Gelman and D.B. Rubin. A single series from the
gibbs sampler provides a false sense of security (with discussion). In J.M.
Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors, Bayesian

Statistics 4, pages 625–631. Oxford University Press, 1992.
[Gelman et al., 2003]A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian

Data Analysis. Chapman and Hall, 2003.



A Practical Implementation of the Gibbs Sampler... 837

[Kass and Raftery, 1995]R.E. Kass and A.E. Raftery. Bayes factor. J. Am. Stat.

Assoc., 90:773–795, 1995.
[Marin et al., to appear]J.M. Marin, K. Mengersen, and C.P. Robert. Bayesian

modelling and inference on mixtures of distributions. Elsevier-Sciences, (to
appear).

[Richardson and Green, 1997]S. Richardson and P.J. Green. On bayesian analysis
of mixtures with an unknown number of components. J. R. Statist. Soc. B,
59(4):731–792, 1997.

[Stephens, 1997]M. Stephens. Bayesian Methods for Mixtures of Normal Distribu-

tions. PhD thesis, Magdalen College, Oxford, 1997.
[Stephens, 2000a]M. Stephens. Bayesian analysis of mixtures with an unknown

number of components — an alternative to reversible jump methods. Annals

of Statistics, 2000.
[Stephens, 2000b]M. Stephens. Dealing with label-switching in mixture models. J.

R. Stat. Soc. B, 62:795–809, 2000.


