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Abstract Appropriately designing the proposal kernel of
particle filters is an issue of significant importance, since
a bad choice may lead to deterioration of the particle sam-
ple and, consequently, waste of computational power. In this
paper we introduce a novel algorithm adaptively approxi-
mating the so-called optimal proposal kernel by a mixture
of integrated curved exponential distributions with logistic
weights. This family of distributions, referred to as mix-
tures of experts, is broad enough to be used in the pres-
ence of multi-modality or strongly skewed distributions. The
mixtures are fitted, via online-EM methods, to the optimal
kernel through minimisation of the Kullback-Leibler diver-
gence between the auxiliary target and instrumental distri-
butions of the particle filter. At each iteration of the particle
filter, the algorithm is required to solve only a single op-
timisation problem for the whole particle sample, yielding
an algorithm with only linear complexity. In addition, we
illustrate in a simulation study how the method can be suc-
cessfully applied to optimal filtering in nonlinear state-space
models.
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1 Introduction

During the last decade, sequential Monte Carlo (SMC)
methods have developed from being a tool for solving spe-
cific problems, such as the optimal filtering problem in gen-
eral state-space models or simulation of rare events (these
topics are abundantly covered in Liu 2001; Doucet et al.
2001; Ristic et al. 2004; Cappé et al. 2005; Del Moral et al.
2006, and the references therein). The high flexibility of
these methods makes it possible to use them for efficiently
executing key steps of composite algorithms tackling very
complex problems, e.g., as in particle Markov chain Monte
Carlo (MCMC) methods for joint inference on static and dy-
namic variables (see Andrieu et al. 2010).

However, while there has been abundant work on adap-
tation of MCMC methods, from the early algorithms of
Haario et al. (2001) to the mathematical study of diminish-
ing adaptation established in Andrieu and Moulines (2006)
and Roberts and Rosenthal (2009), adaptive methods for
SMC are still in their infancy. This article, which sets out
from a theoretical framework for adaptive SMC presented in
Cornebise et al. (2008), is part of the effort to fill this gap—
which is required to achieve maximum efficiency and user-
friendliness. A mathematically less detailed pre-version of
the present paper appeared as part of the Ph.D. dissertation
by Cornebise (2009).

Such adaptive methods are especially suited to cope
with the rising complexity of state-space models (SSMs)
in recent applications. While simple unidimensional filter-
ing problems will rarely justify even a slight computational
overhead of adaptive methods over plain SMC methods
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(such as the bootstrap particle filter; see Sect. 3.1), the situ-
ation is reversed for many state-of-the-art SSMs, where for-
ward simulation may require costly physical emulators or
the evaluation of computationally expensive transition den-
sities. This occurs, e.g., as soon as the model involves dif-
ferential equations and numeric solutions of the same. Re-
cent examples range from health sciences (see e.g. Korotsil
et al. 2012, for a study of the epidemiology of human pa-
pillomavirus infections) to environmental sciences (see e.g.
Robins et al. 2009, who studied data assimilation for atmo-
spheric dispersion of hazardous airborne biological mate-
rial).

In the SMC framework, the objective is to approximate a
sequence of target densities, defined on a sequence of state
spaces as follows. Given a density μ on some state space Ξ ,
the next density μ̃ in the sequence is defined by

μ̃(x̃) :=
∫

μ(x)l(x, x̃) dx
∫∫

μ(x)l(x, x̃) dxd x̃
, x̃ ∈ Ξ̃ , (1.1)

where Ξ̃ is some other state space and l : Ξ × Ξ̃ → R+
is an un-normalised transition density. Here the dimensions
of Ξ̃ and Ξ typically differ. This framework encompasses,
inter alia, the classical problem of optimal filtering in SSMs
recalled in Sect. 6 (see in particular Eq. (6.4)).

SMC methods approximate online the densities gener-
ated by (1.1) by a recursively updated set of random parti-
cles {Xi}Ni=1 and associated importance weights {ωi}Ni=1. At
each iteration of the algorithm, the weighted particle sample
{(Xi ,ωi)}Ni=1 approximates the corresponding target density

μ in the sense that
∑N

i=1 ωif (Xi )/Ω , with Ω :=∑N
j=1 ωj ,

approximates Eμ[f (X)] := ∫ f (x)μ(x) dx (this will be our
generic notation for expectations) for all bounded measur-
able functions f on the corresponding state space Ξ . All
SMC methods have two main operations in common: a mu-
tation step and a selection step. In the former, the particles
are randomly scattered in the state space by means of a pro-
posal transition density r : Ξ × Ξ̃ → R+; more specifically,
the mutation operation generates a set of new, Ξ̃ -valued par-
ticles by moving the particles according to the transition
density r and assigning each mutated particle an updated
importance weight proportional to l/r ; consequently, each
weight reflects the relevance of the corresponding particle
as measured by the likelihood ratio. In general, the mutated
particles are conditionally independent given the ancestor
particles. In the selection step, the particles are duplicated or
eliminated with probabilities depending on the importance
weights. This is typically done by multinomially resampling
the particles with probabilities proportional to the corre-
sponding weights. In the auxiliary particle filter (proposed
by Pitt and Shephard 1999) the particles are resampled ac-
cording to weights that are modified by a factor determined
by an adjustment multiplier function a : Ξ → R+. Intro-
ducing adjustment multipliers makes it possible to, by using

some convenient lookahead strategy, increase the weight of
those particles that will most likely contribute significantly
to the approximation of the subsequent target distribution af-
ter having been selected. In this way computational power is
directed toward zones of the state space where the mass of
the subsequent target density is located.

The choice of the adjustment weight function a and the
proposal density r affects significantly the quality of the
generated sample, and in this paper we focus on adaptive de-
sign of the latter. Letting r(x, x̃) = l(x, x̃)/

∫
l(x, x̃) d x̃ is ap-

pealing as the particles in this case are propagated according
to a dynamics that is closely related to that of the recursion
(1.1). Indeed, by combining this choice of proposal kernel
with the adjustment multiplier function a(x) = ∫ l(x, x̃) d x̃
yields perfectly uniform importance weights. In this case the
SMC algorithm is referred to as fully adapted. However, this
so-called optimal proposal kernel and adjustment multiplier
weight function can be expressed on closed-form only in a
few cases and one is in general referred to approximations
of these quantities.

There is a large literature dealing with the problem of ap-
proximating the optimal proposal kernel. When using SMC
for optimal filtering in SSMs, Doucet et al. (2000) sug-
gest approximating each function l(x, ·) by a Gaussian den-
sity whose mean and covariance are obtained using the ex-
tended Kalman filter. A similar approach based on the un-
scented Kalman filter was proposed by Van der Merwe et al.
(2000) (see also Van der Merwe and Wan 2003). This tech-
nique presupposes that the model under consideration can be
well approximated by a nonlinear Gaussian SSM with linear
measurement equation; however, this far from always the
case, and careless linearisation (e.g. in cases where the lo-
cal likelihood is multimodal) may boomerang and cause se-
vere deterioration of the particle sample. Cappé et al. (2005,
Sect. 7.2.2.4) make a form of Laplace approximation of
l(x, ·) by simply locating the mode of the function in ques-
tion and centering a Gaussian density or the density of a Stu-
dent’s t-distribution around the same. This technique, which
goes back to Pitt and Shephard (1999), is appropriate when
the function is log-concave (or strongly unimodal); never-
theless, as the mode of each l(x, ·) is a function of x, this ap-
proach involves solving one optimisation problem per parti-
cle. Thus, in spite of this intense recent activity in the field,
the state-of-the-art algorithms have met only mitigated suc-
cess as they implicitly assume that the functions l(x, ·) have
a single mode.

A common practice (see e.g. Oh and Berger 1993) for de-
signing proposal distributions in standard (non-sequential)
importance sampling is to consider a parametric family of
proposal distributions and then identify a parameter that
minimizes some measure of discrepancy between the tar-
get and the proposal distributions. Common choices are
the widely used squared coefficient of variation of the im-
portance weights or the negated Shannon entropy (see e.g.
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Cappé et al. 2005, p. 235, for definitions of these quanti-
ties) of the same. Both are maximal when the sample is
completely degenerated, i.e. when one single particle car-
ries all the weight, and minimal when all the importance
weights are equal. The coefficient of variation often appears
in a transformed form as the effective sample size (we re-
fer again to Cappé et al. 2005, for a definition). The same
quantities have been widely used also within the framework
of SMC, but until recently only for triggering selection and
not as a tool for adaptive design of the instrumental dis-
tribution. The key result of Cornebise et al. (2008, The-
orems 1 and 2) was to relate the Shannon entropy to the
Kullback-Leibler divergence (KLD; see Eq. (3.6)) between
the instrumental and proposal distributions of the particle
filter. More specifically, when selection is carried through
using multinomial resampling, each particle cloud update
(selection followed by resampling) can be viewed as stan-
dard importance sampling where a weighted mixture of N

stratas—the ith stratum being proportional to ωil(Xi , ·)—
approximating μ̃ is targeted using a mixture proposal π

comprising N stratas proportional to {ωir(Xi , ·)}Ni=1. As the
number of particles tends to infinity, one may prove that the
KLD between these two mixtures tends to the KLD between
two distributions having densities μ∗(x, x̃) ∝ l(x, x̃)μ(x)

and π∗(x, x̃) ∝ a(x)r(x, x̃)μ(x), which can be viewed as
“asymptotic” target and proposal distributions on the prod-
uct space Ξ × Ξ̃ . In addition, one may prove that the Shan-
non entropy has the same limit. (Cornebise et al. 2008 es-
tablished a similar relation between the coefficient of vari-
ation of the particle weights and the chi-square divergence
between the same distributions.) This gives a sound theoreti-
cal support for using the Shannon entropy of the importance
weights for measuring the quality of the particle sample. In
addition, it suggests that the KLD between the target mix-
ture and π could be used in lieu of the Shannon entropy for
all purposes, especially adaptation. As a matter of fact, in
the context of adaptive design of SMC methods, the KLD is
(as pointed out by Cornebise et al. 2008, Sect. 2.3) highly
practical since it decouples the adaptation of the adjustment
weight function a and that of the proposal kernel r ; see the
next section.

Henceforth, in the present article we extend and im-
plement fully the methodology indicated and sketched by
Cornebise et al. (2008) and select the auxiliary proposal dis-
tribution π from a family {πθ ; θ ∈ Θ} of candidate distri-
butions by picking θ∗ such that the KLD between the tar-
get mixture and πθ∗ is minimal and letting π = πθ∗ . On the
one hand, the chosen parametric family should be flexible
enough to approximate complex transition kernels; on the
other hand, sampling from πθ should be easy. Finally, the
parameterisation should be done in such a way that the prob-
lem of estimating the parameters is as simple as possible. In

this article, we suggest modeling the proposal πθ as a mix-
ture of integrated curved exponential distributions. By let-
ting the mixture weights of the chosen proposal depend on
the ancestor particles {Xi}Ni=1, we allow for partitioning of
the input space into regions corresponding to a specialised
kernel. Each component of the mixture belongs to a family
of integrated curved exponential distributions, whose two
most known members are the multivariate Gaussian distri-
bution and the Student’s t-distribution. Also the parameters
of the mixture depend on the ancestors {Xi}Ni=1. This pa-
rameterisation of the proposal distribution is closely related
to the (hierarchical) mixture of experts appearing in the ma-
chine learning community and described in Jordan and Ja-
cobs (1994), Jordan and Xu (1995). The flexibility of our
approach allows for efficient approximation of the optimal
kernel for a large class of intricate (nonlinear non-Gaussian)
models. Unlike typical EM-type parameter estimation pro-
cedures, which are in general run iteratively until stabilisa-
tion, our adaptive SMC algorithm only requires a decrease
of the KLD, not an exact minimum. As illustrated in our
examples in Sect. 6, such a gain typically occurs already at
early iterations of the algorithm (a characteristic of EM-type
algorithms), implying the need of only very few EM itera-
tions and therefore a minimal computational overhead.

The paper is organized as follows. In the next section we
introduce some matrix notation and list the most common
notation used throughout the paper. Section 3 describes, in
a nutshell, auxiliary SMC methods as well as a KLD-based
approach to adaptation of these methods that is used in the
paper. Section 4 recalls mixtures of experts and Sect. 5 treats
optimisation of the mixture parameters by means of stochas-
tic approximation methods; the latter section is the core of
the paper and contains our main results. In Sect. 6 we il-
lustrate the efficiency of the method on several simulation-
based examples and Appendix contains some proofs.

2 Notation

2.1 Matrix notation

All vectors and matrices are typeset in boldface. Vectors are
column vectors unless precised differently. The ith column
vector of a matrix A is denoted by A|i . We denote by Tr(A)

the trace of a matrix A and for any matrices A and B of
dimensions m × n and p × q , respectively, we denote their
direct sum by

A � B :=
(

A 0p×q

0m×n B

)

, (2.1)

which is such that (A � B)ᵀ = Aᵀ
� Bᵀ and, for any two

matrices C and D of compatible dimensions, (A � B)(C �

D)ᵀ = (ACᵀ) � (BDᵀ), where ᵀ denotes the transpose.
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2.2 List of notation

The following quantities are defined in the corresponding
equations.

Quantity Equation

a∗ (3.3)
αj (4.5)
dKL (3.6)
η (4.2)
φk (6.3)
G (6.2)
g (6.2)
h (5.15)
κ (5.23)
l (5.8)
l∗ (3.2)
μ̃ (1.1)
p̄ (5.7)
p̃ (5.21)
πθ (4.3)
π̄θ ( ) (5.1)
π̄θ ( | ) (5.5)
� (2.1)
Q (6.1)
q (6.1)
rθ (4.1)
ρ (4.1)
ρ̄( ) (4.6)
ρ̄( | ) (5.2)
s̄ (5.6)
s̃ (5.20)
t̄ (5.27)
t̃ (5.28)
θ (4.2)
θ̄ (5.9)
v̄ (5.27)
ṽ (5.28)
wθ (4.4)

3 Preliminaries

3.1 Auxiliary SMC methods

In order to precisely describe one iteration of the SMC al-
gorithm, let μ be a target probability density function over a
space Ξ and suppose that we have at hand a weighted sam-
ple {(Xi ,ωi)}Ni=1 such that

∑N
i=1 ωif (Xi )/Ω , with Ω =

∑N
i=1 ωi , estimates

∫
f (x)μ(x) dx for any μ-integrable

function f . As a notational convention, we use capitals to
denote random variables and lower case for function argu-
ments.

We now wish to transform (by moving the particles and
adjusting accordingly the importance weights) the sample
{(Xi ,ωi)}Ni=1 into a new weighted particle sample approxi-
mating the probability density μ̃ defined on Ξ̃ through (1.1).
Having access to {(Xi ,ωi)}Ni=1, an approximation of μ̃ is
naturally obtained by plugging the weighted empirical mea-
sure associated with this weighted sample into (1.1), yield-
ing the mixture density

μ̃(x̃) ≈
∑N

i=1 ωil(Xi , x̃)
∑N

j=1 ωj

∫
l(Xj , x̃) d x̃

=
N∑

i=1

(
ωia

∗(Xi )
∑N

j=1 ωja∗(Xj )
l∗(Xi , x̃)

)

, (3.1)

where we have introduced the normalised transition density

l∗(x, x̃) := l(x, x̃)
∫

l(x, x̃) d x̃
(3.2)

and the partition function

a∗(x) :=
∫

l(x, x̃) d x̃ (3.3)

of l(x, ·), and ideally an updated particle sample would be
obtained by drawing new particles {X̃i}Ni=1 independently
from (3.1). There are however two problems with this ap-
proach: firstly, in general, the integral

∫
l(·, x̃) d x̃ lacks

closed-form expression, ruling out direct computation of the
mixture weights; secondly, even if the integral was known in
closed form, the resulting algorithm would have an O(N2)

computational complexity due to the normalisation of the
mixture weights. To cope with these issues, we will, as pro-
posed by Pitt and Shephard (1999), aim instead at sampling
from an auxiliary target distribution having density

μ̄(i, x̃) := ωia
∗(Xi )

∑N
j=1 ωja∗(Xj )

l∗(Xi , x̃), (3.4)

over the product space {1, . . . ,N} × Ξ̃ of indices and par-
ticle positions. To sample μ̄ we take an importance sam-
pling approach consisting in drawing independent pairs
{(Ii, X̃i )}Ni=1 of indices and positions from the proposal dis-
tribution

π(i, x̃) := ωia(Xi )
∑N

j=1 ωja(Xj )
r(Xi , x̃) (3.5)

over the same extended space and assigning each draw
(Ii, X̃i ) the importance weight ω̃i := w(Ii, X̃i ), where

w(i, x̃) := l(Xi , x̃)

a(Xi )r(Xi , x̃)
∝ μ̄(i, x̃)

π(i, x̃)
.
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Here r and a are the proposal transition density resp. ad-
justment multiplier weight function mentioned in the intro-
duction. As for all importance sampling, it is crucial that the
target distribution μ̄ is absolutely continuous with respect
to the proposal distribution π . We thus require that the ad-
justment multiplier weight function is positive and that the
proposal transition density is such that for all x ∈ Ξ ,

r(x, x̃) = 0 ⇒ l(x, x̃) = 0,

i.e. the support of l(x, x̃) in included in that of r(x, x̃). Fi-
nally, we discard the indices Ii and keep {(X̃i , ω̃i)}Ni=1 as an
approximation of μ̃.

This scheme, which is traditionally referred to as the
auxiliary particle filter (Pitt and Shephard 1999), encom-
passes the simpler framework of the bootstrap particle filter
proposed originally by Gordon et al. (1993), which simply
amounts to setting a = 1Ξ (implying a gain of simplicity at
the price of flexibility). Moreover, SMC schemes where re-
sampling is performed only at random times can similarly be
cast into the setting of the auxiliary particle filter by compos-
ing the kernels involved in several consecutive steps of the
of recursion (1.1) (see e.g. Cornebise 2009, Chap. 4, for de-
tails). A theoretical analysis of bootstrap-type SMC methods
with random resampling schedule is also given by Del Moral
et al. (2012). Therefore, any methodology built for the aux-
iliary particle filter also applies to these simpler frameworks
without modification.

3.2 A foundation of SMC adaptation

We now describe a foundation of SMC adaptation under-
pinning the coming developments. Recall that the KLD be-
tween two distributions μ and ν, defined on the same state
space Ξ , is defined as

dKL(μ‖ν) := Eμ

[

log
dμ

dν
(X)

]

, (3.6)

provided that μ is absolutely continuous with respect to ν.
Here Eμ denotes the expectation under μ. Casting the KLD
into the framework of SMC methods and replacing μ and
ν by the auxiliary target distribution μ̄ and the proposal π ,
respectively, yields

dKL(μ̄‖π) = Eμ̄

[

log
μ̄(I, X̃)

π(I, X̃)

]

, (3.7)

which decouples as

dKL(μ̄‖π) = Eμ̄

[

log
l∗(XI , X̃)

r(XI , X̃)

]

︸ ︷︷ ︸
Depends only on r

+ Eμ̄

[

log
ωIa

∗(XI )/
∑N

j=1 ωja
∗(Xj )

ωI a(XI )/
∑N

j=1 ωja(Xj )

]

︸ ︷︷ ︸
Depends only on a

.

(3.8)

As clear from the definition (3.4), the measure μ̄ is random
as it depends on the ancestor particles {Xi}Ni=1; the locations
of the latter should thus be viewed as fixed within the brack-
ets of the expectations in (3.7) and (3.8). The first term in
(3.8) corresponds to the discrepancy induced by mutating
the particles {X̃i}Ni=1 using a suboptimal proposal kernel,
and the second term corresponds to the discrepancy induced
by sampling the ancestor indices {Ii}Ni=1 according to sub-
optimal adjustment weights. Moreover,

dKL(μ̄‖π) = −Eμ̄

[
log r(XI , X̃)

]

− Eμ̄

[

log
a(XI )

∑N
j=1 ωja(Xj )

]

+ c,

where the additive term c involves the optimal quantities a∗
and l∗ only and is irrelevant for the optimisation problem.
Equality up to a constant will in the following be denoted
by ≡. Restricting ourselves to adaptation of the proposal
kernel, we obtain the simple expression

dKL(μ̄‖π) ≡ −Eμ̄

[
log r(XI , X̃)

]
. (3.9)

In the next section we present a method for minimising the
KLD (3.9) over a family {πθ ; θ ∈ Θ} of instrumental distri-
butions where the proposal transition density of each mem-
ber belongs to parameterised family of mixtures of experts.
Formally, we will solve

θ∗ := arg min
θ∈Θ

dKL(μ̄‖πθ ) (3.10)

and take π = πθ∗ . Although the right hand side of (3.9) is
most often not directly computable, such a quantity can be
approximated on-the-fly using the weighted sample already
generated; the resulting algorithms (Algorithms 1 and 2; see
Sect. 5) closely resembles the cross-entropy method (see Ru-
binstein and Kroese 2004).

4 Mixture of experts

In this contribution, we consider Ξ = R
p and Ξ̃ = R

p̃

and let the proposal kernel have density (with respect to
Lebesgue measure)

rθ (x, x̃) :=
d∑

j=1

αj (x;β)ρ(x, x̃;ηj ), (4.1)
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where {αj }dj=1 are nonnegative weighting functions sum-
ming into unity and ρ is a Markov transition kernel from
Ξ to Ξ̃ . The weighting functions and the Markov transition
density are parameterised by parameters β and η, respec-
tively, and the j th stratum of the mixture is characterised
by a certain choice ηj of the latter. The integer d is fixed.
Denote

η := {η1, . . . ,ηd},
θ := {β,η}.

(4.2)

Putting (4.1) into the auxiliary particle filter framework in
Sect. 3.1, the associated proposal distribution is given by

πθ (i, x̃) = ωia(Xi )
∑N

�=1 ω�a(X�)

d∑

j=1

αj (Xi ,β)ρ(Xi , x̃;ηj ). (4.3)

We then assign the importance weight ω̃i = wθ (Ii, X̃i ) to
each draw (Ii, X̃i ) from πθ , where

wθ (i, x̃) = l(Xi , x̃)

a(Xi )
∑d

j=1 αj (Xi ,β)ρ(Xi , x̃;ηj )

∝ μ̄(i, x̃)

πθ (i, x̃)
. (4.4)

The set {αj }dj=1 of weight functions typically partitions the
input space Ξ into sub-regions with smooth transitions by
assigning a vector of mixture weights to each point of the in-
put space. In each sub-region, one proposal kernel will even-
tually dominate the mixture, specialising the whole proposal
rθ on a per-region basis. As in Jordan and Xu (1995), we
consider logistic weight functions, i.e. β = {β1, . . . ,βd−1}
and

αj (x,β) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(β
ᵀ
j x)

1 +∑d−1
�=1 exp(β

ᵀ
� x)

, j 
= d,

1

1 +∑d−1
�=1 exp(β

ᵀ
� x)

, j = d,

(4.5)

where x := (xᵀ 1)ᵀ and the βj ’s are vectors in R
p+1. It is

sometimes of interest to resort to simpler mixtures whose
weights do not depend on x by letting, for a set β = (βj )

d
j=1

nonnegative scalars summing into unity, αj (x,β) := βj ,
1 ≤ j ≤ d , independently of x and hence without partition-
ing the input space. This model for the transition kernel is
then similar to the switching regression model (Quandt and
Ramsey 1972).

The original mixture of experts proposed by Jordan and
Jacobs (1994) was based on Gaussian strata ρ, which is in-
deed is the most straightforward choice. However the same
algorithm can, at no additional cost, be extended to the
broader class of densities of integrated curved exponential
form, described in Assumption 1 below, which still allows

for the same trade-off between flexibility, ease of sampling,
and convenient estimation.

Assumption 1 There exist a state space Υ ⊆ R
u and a

Markov transition kernel from Ξ to Ξ̃ × Υ having a den-
sity of form

ρ̄
(
x, (x̃,u);η) := γ (u)h(x, x̃,u) exp

(−a(η)

+ Tr
(
b(η)ᵀs(x, x̃,u)

))
, (4.6)

where the functions γ , h, a and s, b are real-valued resp.
R

s×s′
-valued, such that

ρ(x, x̃;η) =
∫

Υ
ρ̄
(
x, (x̃,u);η)du. (4.7)

In other words, ρ(x, x̃;η) is the density of the marginal of
a curved exponential distribution. In (4.6), s is a vector of
sufficient statistics.

In the next section we present a method fitting efficiently
the proposal πθ to the target μ̄ by solving (3.10). We will il-
lustrate the details for the specific case of multidimensional
Gaussian distributions and multidimensional Student’s t-
distributions. It should however be kept in mind that the al-
gorithm is valid for any member of the family of integrated
curved exponential distributions as long as Assumption 2
below is fulfilled.

5 Main results and algorithms

In the following we discuss how the intricate optimisation
problem (3.10) can be cast into the framework of latent
data problems. Parameter estimation for mixtures of experts
is most often carried through using the EM algorithm (see
McLachlan and Krishnan 2008, Sect. 8.4.6), and also in this
paper a recursive EM-type algorithm will be used for find-
ing close to optimal mixture parameters. More precisely, we
develop an algorithm that is closely related to the online
EM algorithm for latent data models proposed by Cappé and
Moulines (2009). From a practical point of view, a key fea-
ture of the adaptive SMC approach described in Sect. 3.2
is that it aims at decreasing the KLD rather than obtaining
a fully converged parameter estimate: very few EM itera-
tions are therefore needed for obtaining a significant com-
putational gain. This will be illustrated further in the simu-
lation study of Sect. 6.

5.1 Main assumptions and definitions

In order to describe clearly the algorithm, we limit ourselves
initially to the case of constant mixture weights, i.e. we let
αj (x,β) := βj , 1 ≤ j ≤ d , for a set β = {βj }dj=1 of nonneg-
ative scalars summing into unity. The more general choice
(4.5) will be treated in Sect. 5.3.
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We now augment the pair (I, X̃) with the index J of the
mixture component as well as the auxiliary, Υ -valued vari-
able U of the curved exponential family. More specifically,
we introduce an extended random variable (I, J, X̃,U) hav-
ing mixed-type distribution with probability function

π̄θ (i, j, x̃,u) := ωia(Xi )
∑N

�=1 ω�a(X�)
αj (Xi ,β)

× ρ̄
(
Xi , (x̃,u);ηj

)
(5.1)

on the product space {1, . . . ,N} × {1, . . . , d} × Ξ̃ × Υ . It is
easily checked that πθ is the marginal of π̄θ in I and X̃. The
following assumption is critical for convenient estimation.
Although surprising at first glance, it simply requires that
the state space extension used for handling integrated curved
exponential distributions can be easily reverted for the suf-
ficient statistics: the expectation of the sufficient statistics
under the conditional distribution of U given XI = x and
X̃ = x̃, having density

ρ̄(u|x, x̃;η) := ρ̄(x, (x̃,u);η)

ρ(x, x̃;η)
, (5.2)

should be available in closed form. Since the sufficient
statistics of exponential families often have a simple form,
this assumption is most often satisfied; e.g. it is satisfied for
the Student’s t-distribution in Example 2.

Assumption 2 For all η and (x, x̃) ∈ Ξ ×Ξ̃ , the expectation
∫

s(x, x̃,u)ρ̄(u|x, x̃;η) du (5.3)

is available in closed form.

Under Assumption 2, let for j ∈ {1, . . . , d},
p̄j (θ) := Eμ̄

[
π̄θ (j |I, X̃)

]
,

s̄j (θ) := Eμ̄

[

π̄θ (j |I, X̃)

∫
s(XI , X̃,u)ρ̄(u|XI , X̃;ηj ) du

]

,

(5.4)

where we have defined the responsibilities

π̄θ (j |i, x̃) :=
∫

π̄θ (i, j, x̃,u) du
∑d

�=1

∫
π̄θ (i, �, x̃,u) du

= βjρ(Xi , x̃;ηj )
∑d

�=1 β�ρ(Xi , x̃;η�)
. (5.5)

Note that the quantities defined in (5.4) depend implicitly on
the ancestor sample. In addition, we collect these statistics
in the matrix

s̄(θ) := s̄1(θ) � s̄2(θ) � · · · � s̄d(θ) (5.6)

and the vector

p̄(θ) := (p̄1(θ), p̄2(θ), . . . , p̄d(θ)
)ᵀ

. (5.7)

We impose the following additional assumption.

Assumption 3 There are subsets Π ⊆ R
d+ and Σ ⊆ R

s×s′

such that for all {sj }dj=1 ∈ Σd and p ∈ Π, the mapping

θ �→ l(s,p; θ)

:= −(a(η1), . . . , a(ηd)
)
p

+ (logβ1, . . . , logβd)p

+
d∑

j=1

Tr
(
b(ηj )

ᵀsj

)

(5.8)

has a unique global maximum denoted by θ̄(s,p). In partic-
ular,

θ̄(s,p) := arg max
θ∈Θ

l(s,p; θ). (5.9)

Remark 1 (Decoupling, optimal strata weights) It should be
noted that due to the additive form of l, the optimisation
problem (5.9) can be split into the two separate subproblems

1.
{

arg maxβ(logβ1, . . . , logβd)p

subject to
∑d

j=1 βj = 1

2.

arg max
η

(

−(a(η1), . . . , a(ηd)
)
p +

d∑

j=1

Tr
(
b(ηj )

ᵀsj

)
)

,

corresponding to maximisation over mixture weights and
strata parameters, respectively. In the framework considered
so far, where the mixture weights are assumed to be con-
stant, the first of these problems (1) has, for all p ∈ R

d+ the
solution

β̄j = pj
∑d

�=1 p�

for all j .

In the following two examples we specify the solution
to the second problem (2) in Remark 1 for the two—
fundamental—special cases of multivariate Gaussian distri-
butions and multivariate Student’s t-distributions; it should
however be kept in mind that the method is valid for any in-
tegrated curved exponential distribution satisfying Assump-
tion 2.



324 Stat Comput (2014) 24:317–337

Example 1 (Updating formulas for Gaussian strata) In a
first example we let each stratum be the density of a lin-
ear Gaussian regression parameterised by η = (μ,Σ). The
original hierarchical mixture of experts was based on plain
Gaussian distributions and a possibly deep hierarchy of ex-
perts, incurring a computational overhead possibly larger
than affordable for an algorithm used for adaptation. Drop-
ping the hierarchical approach is a possible way to reduce
this overhead at the price of reduced flexibility. Here we
compensate somewhat for this loss by using a linear regres-
sion within each expert. Thus, given J = j , the new par-
ticle location X̃ has p′-dimensional Gaussian distribution
with mean μj XI , where the regression matrix μj is of size
p′ × (p + 1), and symmetric, positive definite covariance
matrix Σj of size p′ × p′. In this case, the sufficient statis-
tics are s(x, x̃,u) = (x̃x̃ᵀ) � (xxᵀ) � (x̃ xᵀ), leading to the
expected responsibilities

p̄j (θ) := Eμ̄

[
π̄θ (j |I, X̃)

]

and the expected sufficient statistics s̄j (θ) := s̄j,1(θ) �

s̄j,2(θ) � s̄j,3(θ) with

s̄j,1(θ) := Eμ̄

[
π̄θ (j |I, X̃) X̃X̃ᵀ],

s̄j,2(θ) := Eμ̄

[
π̄θ (j |I, X̃)XI X

ᵀ
I

]
,

s̄j,3(θ) := Eμ̄

[
π̄θ (j |I, X̃) X̃ X

ᵀ
I

]
.

In addition, the functions a and b in (4.6) are in this case
given by

a(η) = 1

2
log |Σ|,

b(η) =
(

−1

2
Σ−1

)

�

(

−1

2
μΣ−1μᵀ

)

(5.10)

�
(−Σ−1μ

)
.

Consequently, the argument ηj that maximizes l(s,p; θ) for
a given sufficient statistics sj is given by

μ̄j (sj ) := sj,3s−1
j,2,

Σ̄j (pj , sj ) := p−1
j

(
sj,1 − sj,3s−1

j,2sᵀ
j,3

)
.

Remark 2 (Pooling the covariances) In practice, a robusti-
fied version of the algorithm above can be obtained by pool-
ing the covariances (see e.g. Rayens and Greene 1991). This
means that a common covariance matrix is used for all the
components of the mixture, i.e. Σj = Σ for all j . By doing
this, the well-known problem of mixture models with strata
components degenerating to Dirac masses is avoided. It is
straightforward to enforce such a restriction in the optimisa-

tion procedure above, leading to

Σ̄j (pj , sj ) := d−1
d∑

�=1

(
s�,1 − s�,3s−1

�,2sᵀ
�,3

)
(5.11)

for all j .

Example 2 (Updating formulas for Student’s t-distribution-
based strata) A common grip in importance sampling (see,
for instance, Oh and Berger 1993) is to replace, in order to
allow for more efficient exploration of the state space, Gaus-
sian distributions by Student’s t-distributions. Therefore, as
a more robust alternative to the approach taken in Exam-
ple 1, one may use instead a p′-dimensional Student’s t-
distribution with ν degrees of freedom, i.e.

ρ(x, x̃;ηj ) = tp′(x̃;μj x,Σj , ν). (5.12)

Remark 3 (Fixing the degrees of freedom) The number ν of
degrees of freedom of the Student’s t-distributions is fixed,
typically to ν ∈ {3,4}, beforehand and is common to all
strata. A similar choice has been made by, among others,
Peel and McLachlan (2000, Sect. 7) and Cappé et al. (2008)
as it allows for closed form optimisation in the M-step.

The choice (5.12) can be cast into the framework of
Sect. 4, with Υ = R, thanks to the Gaussian-Gamma decom-
position of multivariate Student’s t-distributions used by Liu
and Rubin (1995, Sect. 2) and Peel and McLachlan (2000,
Sect. 3):

t (x̃;μx,Σ, ν) =
∫ ∞

0
N
(
x̃;μx,Σu−1)γ

(

u; ν

2
,
ν

2

)

du,

where γ (u;a, b) := baua−1 exp(−bu)/Γ (a) is the density
of the Gamma distribution with shape parameter a and scale
parameter b. Hence, the multivariate Student’s t-distribution
is an integrated curved exponential distribution (4.6) with
γ (u) = γ (u;ν/2, ν/2), h(x, x̃, u) = (2π)−p/2, sufficient
statistics s(x, x̃, u) = (ux̃x̃ᵀ) � (uxxᵀ) � (ux̃xᵀ), and the
same a and b as in the Gaussian case (5.10). Since the
Gamma distribution is conjugate prior with respect to pre-
cision for the Gaussian distribution with known mean, the
expectation η of U under ρ̄(u|x, x̃;η) can in this case be
expressed as

η(x̃,μx,Σ) :=
∫ ∞

0
uρ̄(u|x, x̃;η) du

= ν + p′

ν + δ(x̃,μx,Σ)
, (5.13)

where δ(x̃,μx,Σ) = (x̃ − μx)ᵀΣ−1(x̃ − μx) is the Maha-
lanobis distance with covariance matrix Σ. This leads to the
expected responsibilities

p̄j (θ) := Eμ̄

[
π̄θ (j |I, X̃)

]
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and the expected sufficient statistics s̄j (θ) = s̄j,1(θ) �

s̄j,2(θ) � s̄j,3(θ) with

s̄j,1(θ) := Eμ̄

[
π̄θ (j |I, X̃)η(X̃,μX,Σ)X̃X̃ᵀ],

s̄j,2(θ) := Eμ̄

[
π̄θ (j |I, X̃)η(X̃,μX,Σ)XI X

ᵀ
I

]
,

s̄j,3(θ) := Eμ̄

[
π̄θ (j |I, X̃)η(X̃,μX,Σ)X̃X

ᵀ
I

]
.

(5.14)

Since the functions a and b are unchanged from the Gaus-
sian case, the same equations (5.11) can be applied for
updating the parameter η based on the expected suffi-
cient statistics (5.14). Moreover, covariance pooling can be
achieved in exactly same way as in Remark 2.

5.2 Main algorithm

Under the assumptions above we define the mean field

h(s,p) := s̄
(
θ̄(s,p)

)
� p̄
(
θ̄(s,p)

)− s � p. (5.15)

We now have the following result (proved in Appendix),
which serves as a basis for the method proposed in the fol-
lowing.

Proposition 1 Under Assumptions 1–3, the following holds
true. If (s∗,p∗) is a root of the mean field h, defined in (5.15),
then θ̄(s∗,p∗) is a stationary point of θ �→ ∇θdKL(μ̄‖πθ ).
Conversely, if θ∗ is a stationary point of the latter mapping,
then (s∗,p∗), with

s∗ = s̄
(
θ∗),

p∗ = p̄
(
θ∗),

(5.16)

is a root of h.

From Proposition 1 it is clear that the optimal parameter
θ∗ solving the optimisation problem (3.10) over the param-
eter space Θ can, under the assumptions stated above, be
obtained by solving the equation h(s,p) = 0 in the space
Σd × Π of sufficient statistics. Nevertheless, solving the
latter equation is obstructed by the fact that the expected
sufficient statistics (5.4), and consequently the mean field it-
self, cannot be expressed on closed form (as we do not know
the target distribution μ̄). Thus, following the online EM ap-
proach taken by Cappé and Moulines (2009), we aim at find-
ing this root using stochastic approximation. More specifi-
cally, we apply the classical Robbins-Monro procedure

ŝ�+1 � p̂�+1 = ŝ� � p̂� + λ�+1h̃(ŝ�, p̂�), (5.17)

where {λ�}�≥1 is a decreasing sequence of positive step sizes
such that

∞∑

�=1

λ� = ∞,

∞∑

�=1

λ2
� < ∞ (5.18)

and h̃(ŝ�, p̂�) is a noisy observation of h(ŝ�, p̂�). We form
these noisy observations by means of importance sampling
in the following way: at iteration �+1 (i.e. when computing
ŝ�+1 and p̂�+1 given ŝ� and p̂�) we estimate

h(ŝ�, p̂�) = s̄
(
θ̄(ŝ�, p̂�)

)
� p̄
(
θ̄(ŝ�, p̂�)

)− ŝ� � p̂�

by, first, setting θ� := θ̄(ŝ�, p̂�), second, estimating s̄(θ�)

and p̄(θ�) by drawing particles and indices {(I �
i , X̃�

i )}N�

i=1
from πθ�

(the currently best fitted proposal distribution),

computing the associated weights {ω̃�
i }N�

i=1, and forming the
importance sampling estimates

p̃j (θ�) :=
N�∑

i=1

ω̃�
i π̄θ�

(
j |I �

i , X̃�
i

)
,

s̃j (θ�) :=
N�∑

i=1

ω̃�
i π̄θ�

(
j |I �

i , X̃�
i

)
(5.19)

×
∫

s
(
XI �

i
, X̃�

i ,u
)
ρ̄
(
u|XI �

i
, X̃�

i ;η�
j

)
du.

Note that we let the Monte Carlo sample size N�, which can
be relatively small compared to the sample size N of the
particle filter, increase with the iteration index �. As before,
we collect the statistics defined in (5.19) in a matrix

s̃(θ�) := (s̃1(θ�) s̃2(θ�) · · · s̃d(θ�)
)

(5.20)

and a vector

p̃(θ�) := (p̃1(θ�), p̃2(θ�), . . . , p̃d (θ�)
)ᵀ

. (5.21)

Note that the importance sampling estimates defined in
(5.19) lack normalisation

∑N�

i=1 ω̃�
i . The role of the latter is

to estimate the normalising constant
∫∫

μ(x)l(x, x̃) dxd x̃ of
the target distribution defined in (1.1), as it holds that

1

N

N∑

i=1

ω̃i
P−→
∫∫

μ(x)l(x, x̃) dxd x̃

as N → ∞ (see e.g. Douc et al. 2008). Here
P−→ denotes

convergence in probability. However, as N� is supposed to
be considerably smaller that N , which is necessary for ob-
taining a computationally efficient algorithm, this estimator
suffers from large variance in our case. Thus, in order to ro-
bustify the estimator we combine the Robbins-Monro pro-
cedure (5.17) with a similar procedure

ĉ�+1 = (1 − λ�+1)ĉ� + λ�+1

N�

N�∑

i=1

ω̃�
i (5.22)
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for the normalising constant. The recursion (5.22) is typi-
cally initialised with

ĉ0 = 1

N0

N0∑

i=1

ω̃0
i .

Obviously, (5.22) does not guarantee that the normalised
weights {ω̃�

i /ĉ�+1N�}N�

i=1 sum to unity, and our approach
thus leads to approximation of a probability measure with
a finite measure. However, this does not impede the conver-
gence of the stochastic approximation algorithm. Needless
to say, this does not affect the properties of the particle ap-
proximation as the weights of the final particle sample ob-
tained using the adapted kernel are renormalised in the usual
manner and thus sum to unity. The final weighted empirical
measure associated with the particle cloud is therefore still
a probability distribution.

So, the Robbins-Monro recursion (5.17) is executed for,
say, L iterations before every updating step of the SMC al-
gorithm or only at time steps decided by the user, and the fi-
nal parameter fit θL defines the instrumental distribution πθ∗
used for propagating the particles. The following assump-
tion is needed to formulate a practically useful algorithm.

Assumption 4 There is a set Γ ⊆ R+ such that for all N ≥
1, {X̃i}Ni=1 ∈ Ξ̃

N
, {Ii}Ni=1 ∈ {1, . . .N}N , θ ∈ Θ , c ∈ Γ , s ∈

Σd , p ∈ Π, and λ ∈ (0,1), it holds that

(1 − λ)c + λ

N

N∑

i=1

ω̃�
i ∈ Γ ,

(1 − λ)s + λ

cN
s̃(θ) ∈ Σd,

(1 − λ)p + λ

cN
p̃(θ) ∈ Π,

where the quantities s̃(θ) and p̃(θ) are defined through
(5.20) and (5.21), respectively.

Under Assumption 4 our main algorithm, combining the two
procedures (5.17) and (5.22), is well defined and goes as
follows.

5.3 Algorithm formulation for logistic weights

We now extend the case of constant mixture weights to
the considerably more complicated case of logistic weights
(4.5). In this case the gradient ∇θdKL(μ̄‖πθ ), the crucial
quantity in the proof of Proposition 1 (given in Appendix),
is given by

Algorithm 1

Require: {(Xi ,ωi)}Ni=1, θ0, ĉ0, ŝ0, p̂0

1: for � = 0 → L − 1 do
2: for i = 1 → N� do
3: draw (I �

i , X̃�
i ) ∼ πθ�

4: set ω̃�
i ← wθ�

(I �
i , X̃�

i )

5: end for
6: compute s̃(θ�) and p̃(θ�) as in (5.19)
7: set

ĉ�+1 ← (1 − λ�+1)ĉ� + λ�+1

N�

N�∑

i=1

ω̃�
i

8: set

ŝ�+1 � p̂�+1 ← (1 − λ�+1)ŝ� � p̂�

+ λ�+1

ĉ�+1N�

s̃(θ�) � p̃(θ�)

9: set θ�+1 ← θ̄(ŝ�+1, p̂�+1)

10: end for

∇θdKL(μ̄‖πθ )

= Eμ̄

[∇θ logπθ (I, X̃)
]

= −(∇θa(η1) · · ·∇θa(ηd)
)
p̄(θ)

+
d∑

j=1

s′
∑

m=1

∇θ b|m(ηj )
ᵀs̄j |m(θ) + ∇θκ(θ),

where

κ(θ) := Eμ̄

[
d∑

j=1

logαj (XI ,β)π̄θ (j |I, X̃)

]

, (5.23)

with responsibilities π̄θ (j |i, x̃) given by, in this case,

π̄θ (j |i, x̃) := αj (Xi ,β)ρ(Xi , x̃;ηj )
∑d

�=1 α�(Xi ,β)ρ(Xi , x̃;η�)

and the vectors p̄(θ) and s̄(θ) being defined as in (5.7). How-
ever, since we are no longer within the framework of expo-
nential families, we will not be able to find a closed-form
zero of ∇θκ(θ) (e.g. a closed-form global maximum of κ(θ))
when p̄(θ) and s̄(θ) are replaced by stochastic approxima-
tion iterates p̂� and ŝ�, respectively. On the other hand, for
all θ� ∈ Θ , the mapping

β �→ κ̄(β; θ�)

:= Eμ̄

[
d∑

j=1

logαj (XI ,β)π̄θ�
(j |I, X̃)

]
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is concave (this stems directly from the multinomial logistic
regression by computing conditional expectations) and can
thus be approximated well by a second degree polynomial
(in β). More specifically, consider the gradient ∇β κ̄(β; θ�),
whose j th block (j ∈ {1, . . . , d − 1}) is given by

∇βj
κ̄(β; θ�)

= Eμ̄

[(
π̄θ�

(j |I, X̃) − αj (XI ,β)
)
XI

]
, (5.24)

and the Hessian ∇β∇β κ̄(β; θ�), having the matrix

∇βj
∇βj ′ κ̄(β; θ�)

= Eμ̄

[

αj (XI ,β)

(

αj ′(XI ,β)

− 1j=j ′

1 +∑d−1
m=1 exp(β

ᵀ
m XI )

)

XI X
ᵀ
I

]

(5.25)

as block (j, j ′) ∈ {1, . . . , d − 1}2. Note that the Hessian
above does not depend on θ�.

Using these definitions, the function κ̄(β; θ�) can be ap-
proximated by means of a second order Taylor expansion
around the previous parameter estimate β� according to

κ̄(β; θ�) ≈ κ̄
(
β�; θ�

)+ (β − β�
) · ∇β κ̄(β; θ�)

∣
∣
β=β�

+ 1

2

(
β − β�

) · [(β − β�
)

· ∇β∇β κ̄
(
β; θ�

)∣∣
β=β�

]
. (5.26)

In the light of (5.26), we approximate the gradient and Hes-
sian quantities (which again lack closed-form expressions
due to the expectation over μ̄) using stochastic approxima-
tion. For this purpose, we set

t̄j (θ) := ∇βj
κ̄(β; θ),

v̄j,j ′(θ) := ∇βj
∇βj ′ κ̄(β; θ),

define

t̄(θ) := (t̄1(θ) · · · t̄d−1(θ)
)
,

v̄(θ) :=
⎛

⎜
⎝

v̄1,1(θ) · · · v̄1,d−1(θ)
...

. . .
...

v̄d−1,1(θ) · · · v̄d−1,d−1(θ)

⎞

⎟
⎠ ,

(5.27)

and find, using again the Robbins-Monro procedure, a root
to the extended mean field

h(s,p,v, t) := s̄
(
θ̄(s,p,v, t)

)
� p̄
(
θ̄(s,p,v, t)

)

� t̄
(
θ̄(s,p,v, t)

)
� v̄
(
θ̄(s,p,v, t)

)

− s � p � v � t.

In this case, the mapping θ̄ updates the strata parame-
ters in analogy with the case of constant mixture weights
(Sect. 5.1) while the β parameter gets updated according to
the Newton-Raphson-type formula

β�+1 := β� − v−1t.

The full procedure is summarised below, p̃(θ�) as in (5.21)
and

t̃j (θ�) :=
N�∑

i=1

ω̃�
i π̄θ�

(
j |I �

i , X̃�
i

)

×
∫

t̄
(
XI �

i
, X̃�

i ,u
)
ρ̄
(
u|XI �

i
, X̃�

i ;η�
j

)
du,

(5.28)

ṽj (θ�) :=
N�∑

i=1

ω̃�
i π̄θ�

(
j |I �

i , X̃�
i

)

×
∫

v̄
(
XI �

i
, X̃�

i ,u
)
ρ̄
(
u|XI �

i
, X̃�

i ;η�
j

)
du.

Algorithm 2

Require: {(Xi ,ωi)}Ni=1, θ0, ĉ0, ŝ0, p̂0, t̂0, v̂0

1: for � = 0 → L − 1 do
2: for i = 1 → N� do
3: draw (I �

i , X̃�
i ) ∼ πθ�

4: set ω̃�
i ← wθ�

(I �
i , X̃�

i )

5: end for
6: compute s̃(θ�) and p̃(θ�) through (5.19)
7: compute t̃(θ�) and ṽ(θ�) through (5.28)
8: set

ĉ�+1 ← (1 − λ�+1)ĉ� + λ�+1

N�

N�∑

i=1

ω̃�
i

9: set

ŝ�+1 � p̂�+1 � t̂�+1 � v̂�+1

← (1 − λ�+1)ŝ� � p̂� � t̂� � v̂�

+ λ�+1

ĉ�+1N�

s̃(θ�) � p̃(θ�) � t̃(θ�) � ṽ(θ�)

10: set θ�+1 ← θ̄(ŝ�+1, p̂�+1) � Here β is updated

according to β�+1 := β� − v̂−1
�+1 t̂�+1.

11: end for

5.4 Some practical guidelines to choose the algorithm’s
parameters

The algorithm outlined above involves parameters, such as
the number d of mixture components and the Monte Carlo
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sample sizes {N�}L−1
�=0 , that need to be set. Fortunately, these

parameters are easy to tune. Moreover, we may expect a sig-
nificant improvement of the SMC proposal distribution also
with a suboptimal choice of the same. Without constituting
a definite answer on how to tune the algorithmic parame-
ters, the following guidelines emerge from the simulations
in Sect. 6.

– Concerning the number d of experts, a too small number
of strata averts good approximation of strongly nonlinear
kernels while a too large d leads to computational over-
head. For instance, in the simulations in Sect. 6 we use up
to d = 8 strata to approximate well a kernel with a ring-
shaped, 2-dimensional support.

– The initial values of the mixture parameters could be cho-
sen based on prior knowledge of the model by, e.g., fit-
ting, in the case of optimal filtering with informative or
non-informative observations, the local likelihood or the
prior kernel, respectively. In our simulations, we initialise
the algorithm with uniform logistic weights (i.e. with β

being a null matrix), regressions being null except for the
intercept (implying independence of the ancestors), and
covariances making the strata widely overspread on the
support of the target.

– For simplicity, the importance sampling sizes can be taken
constant N0 = N1 = · · · = NL−1 over all iterations. This
is well in line with the theory of stochastic approxima-
tion (see e.g. Duflo 1997; Benveniste et al. 1990), which
in general guarantees, if the step size sequence is cho-
sen correctly, convergence of the algorithm as long as the
variance of the observation noise is not increasing with
the iteration index. Moreover, the importance sampling
size can be chosen relatively to the computational bud-
get, by using, say, a proportion α = 20 % or α = 50 %
of the total number N of particles that would be used
for a plain SMC algorithm for the adaptation step. More
specifically, this is achieved by using N� = αN/L sam-
ples per iteration in the adaptation step, and propagating
(1−α)N particles through the SMC updating step (based
on the adapted proposal). In order assure reasonably fast
convergence, the proportion α should be large enough to
assure a decent sampling size N�, typically not less than a
hundred particles. It can be helpful to let the sample size
N0 be twice or three times larger than the size used at a
typical iteration, to recover from a potentially bad initial
choice.

– The number L of iterations can typically be very small
compared to typical stochastic approximation EM runs:
as mentioned at the beginning of Sect. 5, the main
gain in KLD typically occurs in the first dozen itera-
tions.

– The least precise guideline concerns the step sizes
{λ�}L−1

�=0 . Since we not search an exact optimum but rather
aim at fast convergence towards the region of interest, we

use a slowly decreasing step size. A rate matching this
could be, say, letting λ� = �−0.6 (which was used by e.g.
Cappé et al. 2005, Sect. 11.1.5, within the framework of
stochastic approximation EM methods), which satisfies
(5.18). However, in our simulations we use, for simplic-
ity, a constant step size. This is well motivated by the fact
that the adaptation algorithm is run for only a few itera-
tions.

6 Applications to nonlinear SSMs

As mentioned, SMC methods can be successfully applied
to optimal filtering in SSMs. An SSM is a bivariate pro-
cess {(Xk,Yk)}k≥0, where X := {Xk}k≥0 is an unobserved
Markov chain on some state space X ⊆ R

x and {Yk}k≥0 is
an observation process taking values in some space Y ⊆ R

y .
We denote by Q and π0 the transition density (in the fol-
lowing sometimes referred to as the prior kernel) and ini-
tial distribution of X, respectively. Conditionally on X, the
observations are assumed to be conditionally independent
with the conditional distribution G of a particular Yk de-
pending on the corresponding Xk only. We will assume that
Q and G have densities q and g, respectively, with respect
to Lebesgue measure, i.e.

P(Xk+1 ∈ A|Xk) = Q(Xk,A) =
∫

A
q(Xk,x) dx (6.1)

and

P(Yk ∈ B|Xk) = G(Xk,B) =
∫

B
g(Xk,y) dy. (6.2)

For simplicity, we assume that the Markov chain X is time-
homogeneous and that the distribution G does not depend
on k; however, all developments that follow may be ex-
tended straightforwardly to the time-inhomogeneous case.
The optimal filtering problem consists of computing, given
a fixed record Y0:n := (Y0, . . . ,Yn) of observations, the fil-
ter distributions

φk(A) := P(Xk ∈ A|Y0:k) (6.3)

for k = 0,1, . . . , n. As the sequence of filter distributions
satisfies the nonlinear recursion

φk(xk+1)

=
∫

g(xk+1,Yk+1)q(xk,xk+1)φk(xk) dxk∫∫
g(xk+1,Yk+1)q(xk,xk+1)φk(xk) dxk dxk+1

, (6.4)

the optimal filtering problem can be perfectly cast into the
sequential importance sampling framework (1.1) with Ξ =
Ξ̃ ≡ X, μ ≡ φk , μ̃ ≡ φk+1, and l(x, x̃) ≡ g(x̃,Yk+1)q(x, x̃).
Consequently, a particle sample {(Xi ,ωi)}Ni=1 (here and in
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the following we have omitted, for brevity, the time index
from the particles and the associated weights) approximat-
ing φk can be transformed into a sample {(X̃i , ω̃i)}Ni=1 ap-
proximating the filter φk+1 at the subsequent time step by
executing Algorithm 3. Here {ai}Ni=1 is a set of nonnega-
tive adjustment multipliers and the proposal r is a Markov
transition density. In the following examples we illustrate
how the proposal r can be designed adaptively using Algo-
rithm 2 described in the previous section. In Sects. 6.1 and
6.2 we adapt mixtures of Gaussian strata (following Exam-
ple 1) only, while Sect. 6.3 provides also a comparison with
Student’s t-distributed strata.

6.1 Multivariate linear Gaussian model

We start by considering a simple multivariate linear Gaus-
sian model. In this toy example, the optimal kernel l∗ and the

(a) Histogram of the importance weights obtained using the prior ker-
nel and the final adapted kernel in the linear Gaussian model. Weights
are re-normalised and multiplied by the size of the sample. In the fully
adapted case, all weights would be equal to unity

(b) Curve of proportions: proportion of particles, sorted by decreasing
order of importance weight, against proportion of the total mass, for
the prior kernel and for different numbers of iterations of the adaptation
algorithm

Fig. 1 Evolution of the distribution of the importance weights before
and after adaptation

Algorithm 3

Require: {(Xi ,ωi)}Ni=1
1: for i = 1 → N do
2: draw Ii ∼ {a�ω�}N�=1

3: draw X̃i ∼ r(XIi
, ·)

4: set ω̃i ← g(X̃i ,yk+1)q(XIi
,X̃i )

aIi
r(XIi

,X̃i )

5: end for
6: return {(X̃i , ω̃i)}Ni=1

optimal adjustment weight function a∗ (defined in (3.2) and
(3.3), respectively) are available in closed form; here we use
the term “optimal”—which is standard in the literature—
as a proposal distribution π based on these quantities min-
imises the KLD (3.7) (which of course then vanishes as
π = μ̄ in that case). This makes it possible to compare our
algorithm to an exact reference. The optimal kernel does not
belong to our family of mixture of experts. In the model un-
der consideration:

(a) Evolution of the KLD for the step size 0.1/
√

L

(b) Comparison of evolution of KLDs for step sizes {0.001;0.01;0.1;
1;10;15}/√L

Fig. 2 Evolution of the KLD over L = 20 iterations of adaptation for
the linear Gaussian model
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Fig. 3 Evolution of the optimal and adapted kernels for the Bessel
model for 3 distinct ancestors in different regions and for the observa-
tion Yk+1 = 1.0. The last three rows show the evolution of the adapted
proposal kernel after the initial fit, one iteration, and 30 iterations,

respectively. The adaptation algorithm used a constant sample size
N� = 200 for all � ∈ {0,2, . . . ,30}. After 30 iterations (the last row),
the adapted kernel is visually very close to the optimal kernel

– Each Yk , taking values in Y = R
2, is a noisy observation

of the corresponding hidden state Xk with local likelihood
g(x̃,y) = N2(y; x̃,
Y), where 
Y = 0.1 × I2.

– The prior kernel density is a mixture of multivariate
Gaussian distributions q(x, x̃) = (N2(x̃;�1x,
)+ N2(x̃;
�2x,
))/2 with regression matrices
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Fig. 4 Comparison of 1,000 and 200 particles from the prior and final
adapted kernels, respectively, with the 10 % largest weights plotted in
red, along with the corresponding ancestors and the distribution of the
corresponding importance weights. For the prior kernel, the support
of the proposal distribution is over-spread and as much as 80 % of

particles have null weight. On the other hand, the adaptation algorithm
concentrates the particles on the support of the target distribution, thus
narrowing the span of the importance weights and balancing the con-
tributions of all particles (Color figure online)

�1 =
(

1 0 1
0 1 1

)

, �2 =
(

1 0 1
0 1 −1

)

.

– The filter φk at time k is assumed to be a bimodal
distribution X = R

2 with density (N2(x; (0,1)ᵀ,
) +
N2(x; (0,−1)ᵀ,
))/2, where 
 = 0.1 × I2. The two
modes are hence well separated.

In this first example, we consider one single updating step
of the particle filter, with initial particles {Xi}Ni=1 sampled
exactly from the filter φk . For this single step we study the
performance of Algorithm 2. The observation Yk+1 is cho-
sen to be Yk+1 = (1,0)ᵀ = �2(0,1)ᵀ = �1(0,−1)ᵀ. The
likelihood of Xk given Yk+1 is thus symmetric around the
x-axis, giving equal weight to each of the two components
of φk . Even though the optimal kernel l∗ does not belong
to our family of experts, it is still a mixture whose weights
are highly dependent of location of the ancestor, and we can
expect our algorithm to adapt accordingly.

The histogram in Fig. 1a of the importance weights of
the particle swarm produced using the prior kernel shows
that 50 % of these weights are nearly equal to zero, and the
remaining ones are spread over a large range of values. This
is confirmed by looking at the corresponding curve of pro-
portions in Fig. 1b, showing that 80 % of the total mass is
carried by only 25 % of the particles and 99 % of the total
mass by 40 % of the particles.

One single iteration of the adaptation scheme described
in Sect. 5.3 is sufficient to improve those proportions to 80 %
of the mass for 40 % of the particles and 99 % of the mass
for 55 % of the particles; see the corresponding curve of pro-
portions in Fig. 1b. After 10 such iterations, the correspond-
ing curve of proportions (again in Fig. 1b) shows that close
to maximum improvement has been reached: the first few
steps of the optimisation are enough to bring significant im-
provement. The histogram in Fig. 1a of the weights obtained
at the final iteration shows how the weights are concentrated
around unity, the value that corresponds to sampling with
the optimal kernel.

We display in Fig. 2a the KLD (3.8) between the fit
and the target (estimated by means of a Monte Carlo ap-
proximation with a large sample size), and the same KLD
for the proposal based on the prior kernel as well as the
proposal based on the optimal kernel with uniform ad-
justment weights—i.e. all ancestor particles have practi-
cally the same optimal adjustment weight: choosing a ≡
1X makes the second term in (3.8) negligible. As men-
tioned earlier, the KLD decreases very fast, and most of
the improvement is obtained after only a few iterations.
Figure 2b compares the evolution of the KLD for several
step sizes covering four orders of magnitude. As the step
size is increased, the algorithm converges faster, although
less smoothly: this has no impact from a practical point of
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Fig. 5 Improvement of the proposal vai adaptation over 30 iterations.
The plot of proportions (top) and the KLD (bottom) improve dramati-
cally over the very first iterations. While the prior kernel puts 90 % of
the mass on 15 % of the particles, adaptation increases it to 70 % of the
particles in one step and stabilises to 80 % after a very few iterations

view as we are only looking for a good proposal kernel in
an importance sampling setting, not for the exact optimal
one.

6.2 Bessel process observed in noise

As a more challenging example we consider optimal filter-
ing of the Brownian motion underlying a Bessel process
observed in noise, also known as range-only filtering of a
Gaussian random walk. We let the state process evolve in
the plane for visualisation purposes. More specifically, the
SSM is given by

Xk+1 = Xk + Vk,

Yk = ‖Xk‖2 + Wk,

where {Vk}k≥0 and {Wk}k≥0 are sequences of mutually inde-
pendent N2(0,
X)-distributed and N2(0, σ 2

Y )-distributed,
respectively, noise variables and ‖X‖2 is the Euclidean L2

norm on the state space X := R
2. Note that the observa-

tions {Yk}k≥0 are real-valued in this case. With the notation
in (6.1) and (6.2), it holds that q(x, x̃) := N2(x̃;x,
X) the

(a) Components of the logistic weight parameters β�

(b) Components of the intercept matrices μ�

(c) Components of the covariance matrices Σ�

Fig. 6 Parameters θ� of the adapted kernel over 30 iterations of the
algorithm: practically, convergence is achieved after a few steps only

density of the prior kernel and by g(x̃, y) := N (y,‖x̃‖2, σ
2
Y )

the local likelihood. We ensure a diffuse prior kernel and in-
formative observations by setting 
X = I2 and σ 2

Y = 0.01.
As the hidden state is observed range-only, the state equa-
tion provides most of the information concerning the bear-
ing while the local likelihood is invariant under rotation of
the state around the origin. This induces a variety of nonlin-
ear shapes of the optimal kernel depending on the location
of the ancestor—see the three top rows of Fig. 3.
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Fig. 7 Evolution of the effective sample size and the entropy between
target and proposal for the bootstrap filter and the adaptive filter. As
intended, the adaptive filter leads to higher effective sample size and
lower negated Shannon entropy

To start with, we consider again a single step of the parti-
cle filter, updating a weighted particle sample {(Xi ,ωi)}Ni=1
approximating the filter φk at some time index k to a
weighted sample {(X̃i , ω̃i)}Ni=1 approximating the filter φk+1

at the next time step. We assume that φk = N2((0.7,0.7)ᵀ,

0.5 × I2). In our experiment, the original weighted sample
{(Xi ,ωi)}Ni=1 consists of a sample of N = 20,000 i.i.d. par-
ticles drawn exactly from the filter distribution φk (hence,
the particles have uniform weights). The observation at time
k + 1 is Yk+1 = 1.0. We initialise the algorithm with a sam-
ple {(X̃i , ω̃i)}N0

i=1 of size N0 = 1,000 using the prior kernel.
The resulting cloud, along with the 100 particles with largest
weights and the corresponding ancestors, is plotted in Fig. 4
(top row). The support of the proposal distribution is over-
spread: most of the particles have negligible weights, and
only a few particles have comparatively large weights; in-
deed, 80 % of particles have null weight. This is confirmed
by the curve of proportions in Fig. 5 (top): only 20 % of the
proposed particles carry the total mass. Adaptation of the
proposal kernel is thus highly relevant. Here again, adapta-
tion of the adjustment weights is not required, as the ances-

tors of the particles with highest importance weights are not
located in any specific region of the state space.

Based on these 1,000 particles, the first iteration of the
adaptation is carried through using conditional probabilities
from the initial fit displayed in Fig. 3 (fourth row), whose
components are chosen to be independent of the ancestor,
i.e. only the constant term is non-zero. The resulting ker-
nel is plotted in Fig. 3 (fifth row). We use it to propose 200
new particles, serving as an importance sampling approx-
imation of μ̄ at the second iteration. After 30 such itera-
tions, the adapted kernel visible in Fig. 3 (last row) is vi-
sually very close to the optimal kernel. Note the impact of
the location of the ancestor on the un-normalised transition
kernel, whose mass shifts on a circle, and how the adapted
kernel shifts accordingly. Figure 4 (bottom row) shows that
the adaptation algorithm concentrates the particles on the
support of the target distribution, thus narrowing the span of
the importance weights and balancing the contributions of
all particles.

Most importantly, a very small number of iterations suf-
fices to achieve significantly more uniformly distributed im-
portance weights, i.e. to significantly lower the KLD: Fig. 5
(bottom) shows how the KLD drops after the first 2 itera-
tions and then stabilises near null, while the curve of propor-
tions in Fig. 5 (top) shows that the distribution of the weights
is essentially unchanged past the first few iterations.

As a final look at convergence, Fig. 6 displays the evo-
lution of all the estimated parameters over the 30 iterations,
confirming that the fit stabilises after a few steps: the result
of the very first couple of iterations could serve as a more
efficient proposal than the prior kernel. The parameters of
the logistic weights β� are the slowest to stabilise due to the
stochastic gradient used to palliate for the lack of closed-
form update as mentioned in Sect. 5.3.

We now turn focus away from a single time step and run
the adaptive particle filter in parallel with a plain bootstrap
filter for 50 times steps with a simulated observation record
Y0:50 as input. At each iteration we let the adaptive filter op-
timise the proposal kernel using Algorithm 2. The forgetting
of the initial distribution of the random walk entails that the
filter distribution flow converges to a distribution symmet-
ric under rotation and supported on a ring centered at 0. To
connect with widespread measures of efficiency discussed
in Cornebise et al. (2008), we compare in Fig. 7 the negated
Shannon entropy (lower is better) of the importance weights
and relative effective sample size (in percentage of the to-
tal sample; higher is better) of the two filters. The negated
Shannon entropy shows improvement by our adaptive fil-
ter, which is not surprising in the light of the convergence
results of Cornebise et al. (2008, Theorems 1–2): it is a
consistent estimate of the same KLD when the number of
particles tends to infinity. In this example also the relative
effective sample size also exhibits an improvement, even
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Fig. 8 Evolution of the adapted kernel, for three ancestors in different
regions for the tobit model. In this example the observation brings,
thanks to the censorship, a lot of information concerning the location
of the ancestor. Thus, adapting only the proposal kernel will not lead

to perfect adaptation, as can be seen on the fit after 10 iterations. In
this case it is thus highly relevant to consider adaptation also of the
adjustment multiplier weights

though it is a consistent estimate of the chi-square diver-
gence between the same distributions rather than the KLD
(see again Cornebise et al. 2008, Theorems 1–2, for an ex-
act formulation of this result). Even though this makes sense
to some extent, one should not expect this to hold systemat-
ically.

6.3 Multivariate tobit model

We now briefly illustrate how far adaptation of the proposal
kernel leads—and where it stops. Consider a partially ob-
served multivariate dynamic tobit model

Xk+1 = AXk + Uk+1,

Yk = max
(
BᵀXk + Vk,0

)
,

where X = R
2, A = 0.8 × I2, and B = (1,1)ᵀ ∈ R

2, so that
Yk takes values in R. Here {Uk}k≥1 and {Vk}k≥0 are inde-
pendent sequences of mutually independent and identically
distributed Gaussian variables with variances 
U = 2 × I2

and σ 2
v = 0.1, respectively. The observation process consists

of noisy observations of the sum of its components of the
hidden states. In addition, the observations are left-censored.
We consider again a single update of the particle swarm for
a given time step k, where we have N = 20,000 ancestor
particles distributed according to N2((1,1)ᵀ,10 × I2) and
set Yk+1 = 0. The local likelihood is hence null above the
line Δ = {x ∈ R

2 : Bᵀx = 0} and constant below with a nar-
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row transition region, as displayed in Fig. 8 (second row).
The prior kernel displayed in Fig. 8 (first row) can have
most of its mass out of the high-likelihood regions, depend-
ing on the ancestor. Figure 8 (third row) illustrates the un-
normalised optimal transition kernel for three reference an-
cestors, showing how the match between the supports of the
prior kernel and the local likelihood varies depending on the
position of the ancestor particle relatively to the line A−1�.
Hence, half of the original particles have very small adjust-
ment multiplier weights.

Adapting the proposal kernel will hence require at least
two components, and will not lead to perfect adaptation, as
can be seen on the fit after 10 iterations displayed in Fig. 8
(last row). The ancestor (1,1)ᵀ is the center of the ancestor
sample, and the un-normalised optimal kernel is the prior
kernel truncated in its middle; (−3,−1)ᵀ is the bottom left
of the ancestor sample, and the un-normalised optimal ker-
nel almost matches the prior, save for a truncation in the up-
per right tail; (9,5)ᵀ is the top right of the ancestor sample,
and the un-normalised optimal kernel differs widely from
the prior kernel, as only the very far tails of the latter match
non-null local likelihood.

Finally, without getting into details, we make our point
through Fig. 9 showing again how the KLD drops in the first
iteration for families of both Gaussian distributions and Stu-
dent’s t-distributions. We nevertheless purposefully keep the
algorithm running for a large number of iterations, to illus-
trate the difference between the Gaussian and the Student’s t

parameterisations. The Gaussian parameterisation stabilises
close to the minimum achieved by the optimal kernel with
uniform adjustment weights, which is not negligible. In ad-
dition, the Student’s t-distribution allows for heavier tails at
the price of a higher attainable lower bound on the KLD.

Finally, Fig. 9 illustrates a limit case for kernel-only
adaptation: replacing the prior kernel by the optimal one re-
duces only the KLD, which is still far from zero, by half.
In this example, chosen for that purpose, the observation
brings, thanks to the censorship, a lot of information con-
cerning the location of the ancestor. In this case it is thus
highly relevant to consider adaptation also of the adjustment
multiplier weights. Naturally, this could, as a logical next
step in development of adaptive SMC algorithms, be done
by designing a minimisation algorithm for the second term
of (3.8), which we leave as an open problem.

7 Future work and conclusion

Relying on the results of Cornebise et al. (2008), we have
built new algorithms approximating the so-called optimal
proposal kernel at a given time step of an auxiliary parti-
cle filter by means of minimisation of the KLD between the
auxiliary target and instrumental distributions of the particle

Fig. 9 Comparison of the evolution of the KLD for the Gaussian ex-
perts and the Student’s t -distributed expert over L = 5,000 iterations
of the algorithm

filter. More specifically, the algorithm fits a weighted mix-
ture of integrated curved exponential distributions with lo-
gistic weights to the auxiliary target distribution by minimis-
ing the KLD between the two using a Monte Carlo version
of the online EM method proposed by Cappé and Moulines
(2009).

In addition, we have applied successfully this relatively
simple algorithm to optimal filtering in SSMs; indeed, run-
ning the stochastic approximation-based adaptation proce-
dure for only a few iterations at every time step as the par-
ticles evolve leveled off significantly the distribution of the
total weight mass among the particles also for models ex-
hibiting very strong nonlinearity. Thus, adding the adapta-
tion step to an existing particle filter implementation implies
only limited computational demands.

A proof of convergence, combining the theory developed
in Sect. 5 with existing theory of stochastic approximation
with Markovian perturbations (treated by, e.g., Duflo 1997;
Benveniste et al. 1990) of the algorithm is currently in
progress. In addition, we investigate at present the possibil-
ity of extending the approach to comprise adaptation also of
the adjustment multipliers.

Acknowledgements We thank the anonymous referees for insightful
comments that significantly improved the presentation of the paper.

Appendix: Proof of Proposition 1

The proof follows the lines the proof of Cappé and Moulines
(2009, Proposition 1). For vector-valued differentiable func-
tions h = (h1, . . . , hm)ᵀ from Θ to R

m we denote by ∇θh
ᵀ

the |Θ|×m matrix having the gradient ∇θhj as j th column,
that is, the inverse of the Jacobian of the same mapping.
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Let (s∗,p∗) be a zero of h and set θ∗ := θ̄(s∗,p∗). Since
for all η and s ∈ R

s×s′
,

∇θ Tr
(
b(η)ᵀs

)=
s′
∑

�=1

∇θ b|�(η)ᵀs|�, (A.1)

it holds, by definition,

∇θ l
(
s∗,p∗; θ)∣∣

θ=θ∗

= −(∇θa(η1) · · ·∇θa(ηd)
)∣∣

η=η∗p∗

+ (∇θ logβ1 · · ·∇θ logβd)|β=β∗p∗

+
d∑

j=1

s′
∑

�=1

∇θ b|�(ηj )
ᵀ∣∣

η=η∗s∗
j |�

= 0. (A.2)

On the other hand, by Fisher’s identity,

∇θ logπθ (i, x̃)

= Eπ̄θ

[∇θ log π̄θ (I, J, X̃,U)|X̃ = x̃, I = i
]

= −
d∑

j=1

π̄θ (j |i, x̃)∇θa(ηj )

+
d∑

j=1

π̄θ (j |i, x̃)∇θ logβj

+
d∑

j=1

π̄θ (j |i, x̃)

∫
∇θ Tr

(
b(ηj )

ᵀs(Xi , x̃,u)
)

× ρ̄(u|Xi , x̃;ηj ) du,

and, by (A.1),

∇θ logπθ (i, x̃)

= −
d∑

j=1

π̄θ (j |i, x̃)∇θa(ηj )

+
d∑

j=1

π̄θ (j |i, x̃)∇θ logβj

+
d∑

j=1

s′
∑

�=1

π̄θ (j |i, x̃)∇θ b|�(ηj )
ᵀ

×
∫

s|�(Xi , x̃,u)ρ̄(u|Xi , x̃;ηj ) du.

Consequently,

∇θdKL(μ̄‖πθ )

= Eμ̄

[∇θ logπθ (I, X̃)
]

= −(∇θa(η1) · · ·∇θa(ηd)
)
p̄(θ)

+ (∇θ logβ1 · · ·∇θ logβd)p̄(θ)

+
d∑

j=1

s′
∑

�=1

∇θ b|�(ηj )
ᵀs̄j |�(θ). (A.3)

Thus, as

h
(
s∗,p∗)= 0

⇒ s̄
(
θ̄
(
s∗,p∗))

� p̄
(
θ̄
(
s∗,p∗))= s∗

� p,

we obtain

∇θdKL(μ̄‖πθ )|θ=θ∗ = 0. (A.4)

Conversely, let θ∗ be a stationary point of θ �→
dKL(μ̄‖πθ ) (i.e. (A.4) holds) and let (s∗,p) be given by
(5.16). Then we conclude, via (A.2) and (A.3), that θ∗ is
a stationary point of θ �→ l(s∗,p∗; θ) as well. However, by
Assumption 3, this point is unique and equal to θ̄(s∗,p∗);
thus,

s∗
� p∗ = s̄

(
θ̄
(
s∗,p∗))

� p̄
(
θ̄
(
s∗,p∗))

⇒ h
(
s∗,p∗)= 0,

which completes the proof.

References

Andrieu, C., Moulines, E.: On the ergodicity properties of some
adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505
(2006)

Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte
Carlo methods. J. R. Stat. Soc., Ser. B, Stat. Methodol. 72(3),
269–342 (2010)

Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and
Stochastic Approximations, vol. 22. Springer, Berlin (1990).
Translated from the French by Stephen S.S. Wilson

Cappé, O., Moulines, E.: On-line expectation–maximization algorithm
for latent data models. J. R. Stat. Soc., Ser. B 71(3), 593–613
(2009)

Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Mod-
els. Springer, Berlin (2005)

Cappé, O., Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Adaptive
importance sampling in general mixture classes. Stat. Comput.
18(4), 447–459 (2008)

Cornebise, J.: Adaptive sequential Monte Carlo methods. Ph.D. thesis,
Université Pierre et Marie Curie–Paris 6 (2009)

Cornebise, J., Moulines, E., Olsson, J.: Adaptive methods for sequen-
tial importance sampling with application to state space models.
Stat. Comput. 18(4), 461–480 (2008)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers.
J. R. Stat. Soc., Ser. B 68(3), 411 (2006)

Del Moral, P., Doucet, A., Jasra, A.: On adaptive resampling strategies
for sequential Monte Carlo methods. Bernoulli 18(1), 252–278
(2012)



Stat Comput (2014) 24:317–337 337

Douc, R., Moulines, E., Olsson, J.: Optimality of the auxiliary particle
filter. Probab. Math. Stat. 29(1), 1–28 (2008)

Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sam-
pling methods for Bayesian filtering. Stat. Comput. 10(3), 197–
208 (2000)

Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo
Methods in Practice. Springer, New York (2001)

Duflo, M.: Random Iterative Models, vol. 34. Springer, Berlin (1997).
Translated from the 1990 French original by S.S. Wilson and re-
vised by the author

Gordon, N., Salmond, D., Smith, A.F.: Novel approach to nonlinear/
non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Sig-
nal Process. 140, 107–113 (1993)

Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algo-
rithm. Bernoulli 7(2), 223–242 (2001)

Jordan, M., Jacobs, R.: Hierarchical mixtures of experts and the EM
algorithm. Neural Comput. 6, 181–214 (1994)

Jordan, M., Xu, L.: Convergence results for the EM approach to
mixtures of experts architectures. Neural Netw. 8(9), 1409–1431
(1995)

Korotsil, I., Peters, G., Cornebise, J., Regan, D.: Adaptive Markov
chain Monte Carlo forward simulation for statistical analysis in
epidemic modeling of human papilloma virus. To appear Stat.
Med. arxiv:1108.3137 (2012)

Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer, New
York (2001)

Liu, C., Rubin, D.: ML estimation of the t distribution using EM and
its extensions, ECM and ECME. Stat. Sin. 5(1), 19–39 (1995)

McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, 2nd
edn. Wiley, New York (2008)

Oh, M.S., Berger, J.O.: Integration of multimodal functions by Monte
Carlo importance sampling. J. Am. Stat. Assoc. 88(422), 450–456
(1993)

Peel, D., McLachlan, G.: Robust mixture modelling using the t distri-
bution. Stat. Comput. 10(4), 339–348 (2000)

Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle
filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

Quandt, R., Ramsey, J.: A new approach to estimating switching re-
gressions. J. Am. Stat. Assoc. 67, 306–310 (1972)

Rayens, W., Greene, T.: Covariance pooling and stabilization for clas-
sification. Comput. Stat. Data Anal. 11(1), 17–42 (1991)

Ristic, B., Arulampalam, M., Gordon, A.: Beyond Kalman Filters: Par-
ticle Filters for Target Tracking. Artech House, Norwood (2004)

Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Com-
put. Graph. Stat. 18(2), 349–367 (2009)

Robins, P., Rapley, V.E., Green, N.: Realtime sequential inference of
static parameters with expensive likelihood calculations. J. R.
Stat. Soc., Ser. B 58, 641–662 (2009)

Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer,
Berlin (2004)

Van der Merwe, R., Wan, E.: Sigma-point Kalman filters for proba-
bilistic inference in dynamic state-space models. In: Proceedings
of the Workshop on Advances in Machine Learning, Montreal,
Canada (2003)

Van der Merwe, R., Doucet, A., De Freitas, N., Wan, E.: The unscented
particle filter. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Adv.
Neural Inf. Process. Syst., vol. 13. MIT Press, Cambridge (2000)

http://arxiv.org/abs/arxiv:1108.3137

	Adaptive sequential Monte Carlo by means of mixture of experts
	Abstract
	Introduction
	Notation
	Matrix notation
	List of notation

	Preliminaries
	Auxiliary SMC methods
	A foundation of SMC adaptation

	Mixture of experts
	Main results and algorithms
	Main assumptions and definitions
	Main algorithm
	Algorithm formulation for logistic weights
	Some practical guidelines to choose the algorithm's parameters

	Applications to nonlinear SSMs
	Multivariate linear Gaussian model
	Bessel process observed in noise
	Multivariate tobit model

	Future work and conclusion
	Acknowledgements
	Appendix: Proof of Proposition 1
	References


