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Adaptive Markov chain Monte Carlo
forward projection for statistical
analysis in epidemic modelling of
human papillomavirus
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David G. Regan?

A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain
Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordi-
nary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6,
HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group.
Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed
and common sexually transmitted infection with more than 100 types currently known. The two types studied in
this paper, types 6 and 11, are causing about 90% of anogenital warts.

We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett
and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic
mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing
matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes
the sexual interactions between members of the population under study and relies on several quantities that are
a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic
model parameters as well as unknown sexual mixing matrix parameters related to assortativity.

Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms
to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient
exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters
provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain
methods. We conclude with simulation studies on synthetic and recent actual data. Copyright © 2012 John Wiley
& Sons, Ltd.

Keywords: human papillomavirus (HPV); genital warts; forward projection; adaptive Markov chain Monte
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1. Background on modelling human papillomavirus and relevance to
community health

The human papillomaviruses (HPV) are a family of small DNA viruses that preferentially infect differ-
entiating epithelial cells of the skin and mucosae. More than 100 HPV genotypes have thus far been
identified, classified according to their tissue tropism (mucosal or cutaneous) and oncogenic potential
(high or low). About 40 HPV types are known to infect the mucosae, including those of the anogenital
and oral tracts, and 13-18 of these are considered to be oncogenic (high-risk) on the basis of their
association with malignancies. Low-risk HPV types are associated with benign lesions such as genital
warts and low-grade intraepithelial neoplasias of the cervix [1,2]. Sexual contact is the primary mode
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of transmission [3], and HPV is the most common sexually transmitted infection in the world. HPV is
known to be the causal factor in the vast majority of cervical cancer cases and is also implicated in a
proportion of other anogenital cancers and cancers of the head and neck. The overall burden of disease
attributed to HPV, both cancers (as much as 5.2% of incident cancers worldwide) and benign lesions
such as genital warts, is considerable [4].

Two vaccines have been developed and shown through clinical trials to be highly effective in the pre-
vention of precancerous lesions and persistent infection due to an important subset of HPV types [5, 6].
The quadrivalent vaccine (Gardasil) protects against high-risk HPV types 16 and 18, which are asso-
ciated with 70-75% of cervical cancers, and against low-risk HPV types 6 and 11, which cause more
than 90% of genital warts. The bivalent vaccine (Cervarix) provides protection against HPV types 16
and 18 only. Both vaccines have been licensed in more than 100 countries, and publicly funded national
immunisation programmes have commenced in some of these including Australia (Gardasil) [7].

National immunisation programmes are costly, and decisions regarding their implementation are
generally made on the basis of health-economic evaluations. In regard to HPV, these decisions are
complicated by two related factors: (1) HPV is a sexually transmitted infection; and (2) only a small
proportion of infections do not resolve and can lead to cancer many years or decades subsequent to
acquisition. Both of these factors have generally been addressed by using models to estimate the long-
term impact of vaccination on the incidence of HPV-related disease so that the costs and benefits can be
calculated. However, it is the former of these factors that is of particular relevance in the context of this
study. Because HPV is an infectious disease, the rate of transmission in a population, commonly referred
to as the ‘force of infection’, is a function of the prevalence of the infection in the population at any given
time [8]. Furthermore, the benefit of vaccination that confers immunity to infection (immunisation) is
not confined only to those directly immunised— ‘unvaccinated individuals’ (who remain susceptible to
infection) enjoy a degree of indirect protection because their risk of exposure is reduced through a dimin-
ishment in circulating virus. This indirect benefit of vaccination is referred to as ‘herd immunity’ [9]. In
order to model the impact of vaccination on the course of the HPV epidemic over time in a manner that
captures the herd immunity effect, we must use dynamic transmission models [10, 11]. Failure to do so
can result in an underestimation of the potential benefit of vaccination.

Dynamic mathematical transmission models have been used extensively to estimate the potential
impact of HPV vaccination in a wide variety of settings (e.g. [12-16], not comprehensive) and as a
component of cost-effectiveness evaluations that have informed decisions on the funding of vaccination
programmes (e.g. [17-22], not comprehensive). Transmission models have traditionally been formulated
in a deterministic framework as systems of differential equations (ordinary or partial) [8, 23, 24]. With
the increasing power of personal desktop computers and access to high-performance computing facili-
ties, the use of agent-based stochastic modelling approaches has become more prominent (examples for
HPV include [25, 26]). The latter approach is particularly useful for low-prevalence infections where
there is a possibility of extinction and/or where it is necessary to capture events that occur at the level
of the individual (e.g. tracing and treating sexual partners of infected individuals). However, for their
computational efficiency, analytical tractability and ability to provide mechanistic insights to epidemic
dynamics, deterministic ordinary differential equation (ODE) models are often preferred, particularly
for endemic infections such as HPV [16].

In this study, we develop a Bayesian statistical model and estimation methodology to perform the
calibration of a high-dimensional nonlinear system of ODEs representing an epidemic model for HPV
types 6 and 11. A previously published modelling study on the potential impact of vaccination on HPV
prevalence in the Australian population [16] used a model of the same Susceptible-Infected—Recovered—
Susceptible (SIRS) type and was focused on HPV-16. Whereas the health and economic consequences
of HPV-16 are more serious than for types 6 and 11, we chose a model for HPV-6 and HPV-11 for this
study because genital warts caused by the two types are a significant public health problem. For example,
an extensive study conducted in several Nordic countries [27] found that close to 11% of women had
genital warts at some point in their lives, whereas a similar study in Australia estimated a prevalence of
4% [28]. An individual with genital warts usually suffers from both clinical symptoms and psychosocial
problems (such as anxiety) [29], which potentially further increases the costs of his or her treatment. We
were also motivated by current availability of Australian genital warts incidence [30] and seroprevalence
[31] data that could be used for calibration.

Despite extensive study, there remains considerable uncertainty regarding aspects of the natural
history of HPV and the patterns of sexual behaviour that underpin transmission [32, 33]. Furthermore,
many studies have not been designed with transmission models in mind, so the processes and phenomena
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they measure cannot always be applied directly and/or their interpretation in the context of transmission
is not clear. Areas of uncertainty that present particular challenges for modelling include interpretation
of vaccine efficacy from clinical trials in the context of transmission, the duration of infectiousness
(as opposed to the duration of detectability using currently available tests), the duration and nature of
naturally acquired immunity, the relationship between seropositivity and immunity, and the probability
of transmission on sexual contact. Some of these are difficult to measure at a population level for prac-
tical and/or ethical reasons. We demonstrate a Bayesian statistical methodology that will address these
uncertainties in the estimation and calibration of the ODE epidemic model we have developed. This
methodology allows us to statistically quantify the extent of the uncertainty in model outcomes that are
derived from uncertainty in the inputs, and the contribution of uncertainty in individual parameters to
the uncertainty in the outcomes [34,35]. Ultimately, we can use it to predict the impact of vaccination
on a population.

1.1. Introduction to adaptive Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling has gained a wide recognition in all areas of modelling
and statistical estimation as an essential tool for performing inference in Bayesian models (see reviews
and discussions in [36] and [37]). In this paper, we consider the recently developed class of algorithms
known as adaptive Markov chain Monte Carlo (AdMCMC) (see a review in [38]) and demonstrate how it
may be extended to solve statistically challenging estimation and prediction problems of direct relevance
to the interpretation and analysis of the calibration and vaccine response dynamics for HPV epidemic
models. We illustrate this on a model we develop for HPV-6 and HPV-11.

Standard MCMC algorithms that do not incorporate adaptation often require a degree of ‘tuning’ of the
parameters controlling the algorithms’ performance. This is typically performed by off-line simulations
to assess performance of the mixing of the resulting Markov chain followed by numerical investigation
of the convergence rates to stationarity of the chain for different algorithmic settings of the proposal
distribution. For example, the widely used variant of the Metropolis—Hastings algorithm, the random
walk Metropolis algorithm, has mixing performance that is controlled through specification of the
Markov chain proposal distributions covariance matrix. Tuning this matrix for optimal performance
can be computationally expensive and inefficient (see detailed discussions in [36, 37, 39]). Optimal
performance of an MCMC algorithm is typically either specified by the convergence rate of the Markov
chain to stationarity or through the related quantity, the acceptance probability of the rejection step in
the MCMC algorithm. In this regard, theoretically optimal results have been derived for several classes
of statistical models, which now act as guides for more complicated sampling problems (see discussions
in [40]).

In this paper, we construct an ODE HPV epidemic model on a high-dimensional space both in the
parameters of the model and also in the latent ODE state trajectories solved for at each discrete time
point in the ‘forward projection’ ODE solver. This high dimensionality in the posterior parameter space
provides a significant challenge for standard MCMC algorithms with respect to the design of an efficient
proposal mechanism for the Markov chain. In particular, in the model considered in this paper, the fact
that we incorporate a forward projection stage for the ODE solver adds additional complications in the
design of the proposal. Therefore, it is desirable to automate this proposal construction for the MCMC
sampler, avoiding computationally expensive tuning processes. Hence, we develop an adaptive version
of the random walk Metropolis algorithm, coupled with forward projection. The incorporation of an
adaptive proposal mechanism in a MCMC algorithm has been demonstrated to improve the perfor-
mance of the sampling algorithm relative to standard MCMC approaches (see reviews of several
examples of this improvement in [38]). The improvement is achieved by learning the structure of the
Markov chain proposal distribution on-line in an automated fashion, avoiding tuning of the MCMC
proposal mechanism.

There are several classes of ADMCMC algorithms, and each class has several adaptation strategies
[41,42]. These approaches can be classified as either internal adaptation mechanisms, including con-
trolled MCMC methods, or external adaptation strategies (see discussion in [41]). The distinguishing
feature of AAMCMC algorithms, when compared with standard MCMC, is that the Markov chain is
generated via a sequence of transition kernels. Adaptive algorithms get their name from the fact that they
utilise a combination of time or state inhomogeneous proposal kernels. Each proposal in the sequence
is allowed to depend on the history of the Markov chain generated, resulting in many possible variants.
When using inhomogeneous Markov kernels, it is particularly important to ensure that the generated
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Markov chain is ergodic, with the appropriate stationary distribution. Several recent papers proposing
theoretical conditions that must be satisfied to ensure ergodicity of adaptive algorithms include [41] and
[43]. The paper [44] proves ergodicity of AAMCMC under conditions known as Diminishing Adaptation
and Bounded Convergence. Designing an adaptation strategy that satisfies these conditions guarantees
asymptotic convergence of the law of the Markov chain samples to the target posterior and ensures that
the Weak Law of Large Numbers holds for bounded test functions of the parameter space (an interested
reader is referred to [44] for details). In this paper, we work with a transition kernel that is well known
to satisfy these conditions, has been used successfully in several applications [38] and is based on the
adaptive Metropolis algorithm.

1.2. Contributions

This paper formulates a model for HPV types 6 and 11, which is minimalistic yet adequate for cover-
ing all aspects of the disease transmission and incorporates seropositivity as a state associated with an
individual’s natural immunity after recovery.

Using a deterministic ODE model, three key tasks are considered: construction of a robust statistical
modelling framework under a Bayesian paradigm to perform calibration of this coupled ODE transmis-
sion model with extensions to a stochastic population mixing matrix formulation; development of an
automated statistical estimation methodology based on a modification to AAMCMC to incorporate for-
ward projection for the ODE, which will provide a robust means of performing calibration and statistical
analysis of the calibration performance; and a statistical methodology to study vaccination responses on
the basis of the posterior predictive distribution that is estimated via AAMCMC.

Detailed studies are undertaken on synthetic data to assess the properties of the model and AAMCMC
forward projection methodology. In addition, to investigate model specification and design assumptions,
several sensitivity studies are undertaken to assess appropriateness of the proposed model as a model of
the sexually active Australian population. This is followed by assessment of the calibration performance
on real data collected from Australian sources (genital warts incidence [30] and HPV-6 and HPV-11
seroprevalence [31]).

2. Human papillomavirus transmission model

In developing a model for HPV transmission dynamics, one could consider one of two widely accepted
modelling approaches that are adopted in the epidemiological literature for addressing epidemic mod-
elling in a population. Fundamentally, these involve consideration of the dynamics of the spread of the
disease through the population either specified according to a deterministic dynamical system of coupled
ODE:s or, as a possible alternative, via a system of coupled stochastic differential equations (SDE) based
on individuals in the population, which combine to specify the ‘state’ of the system at a given time.

Typically, the approach adopted will depend on both the expected epidemiological outcomes as well
as the model specification, which will be based on the state of knowledge of the system and the available
survey data for calibration. In addition, practical modelling features such as the temporal resolution and
the dimension of the ‘state vector’ in the system model will often be of significance in such decisions
regarding the use of deterministic equations versus their stochastic alternative frameworks.

As discussed in [45,46], what differentiate models developed for epidemics in a deterministic frame-
work versus a stochastic individual based model are three primary considerations: (1) the size of the
population under consideration; (2) the proportion of the population that is involved in the epidemic
over time [47]; and (3) relevance of individual level effects to the research goals (see book length dis-
cussions in [48]). Hence, we note that the development of ODE models is justified typically under the
assumptions that one is considering large populations in which the mean equilibrium dynamics become
of interest to the epidemic modellers. This is a reasonable assumption to make when modelling the
sexually active Australian population, and it has the added advantage that it also lets us avoid the need
to perform stochastic simulations of SDE models over time in thousands of dimensions.

Therefore, we develop a dynamic compartmental transmission model for HPV types 6 and 11
(Figure 1) of SIRS type. The entire modelled population is viewed as being distributed between a set of
non-overlapping groups (‘compartments’) representing the stages of disease progression. The model is
intended to describe how the number of people in each compartment changes over time. For example,
members of the susceptible population ‘move’ from S to / as they become infected, and members of the
recovered seropositive population ‘move’ from P to S as they lose their immunity.
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PSCy/DAI, PSCy/DWT,

(1—-PSCy)/DAI, (1—-PSC,)/DWT,

Figure 1. A compartmental HPV-6 or HPV-11 transmission model. We divide the studied population into the
following non-overlapping compartments: S denotes individuals who are at risk of HPV infection; / denotes
infected individuals; G denotes infected individuals who developed genital warts; P denotes those who recovered
and are seropositive and immune; and N denotes individuals who are recovered and immune but seronegative.
The indices g, a and s indicate that every compartment is stratified by gender, age and level of sexual activity.
Movements between compartments are occurring at per capita rates specified by the following parameters:
A is the force of infection dependent on the proportion of individuals in 7; PSC is the probability of becoming
seropositive; WIP is the genital warts incubation period; DAI is the duration of asymptomatic (i.e. without genital
warts) HPV infection; DWT is the duration of treatment for genital warts; and DI is the duration of immunity.
Subscripts denote stratification of parameters: for example, DWT g means that in our model this parameter
is gender-dependent.

Underlying epidemic model assumptions

We present the key assumptions upon which the model is based. We note that the effect of these assump-
tions on the sensitivity of the calibration of the developed HPV models are studied and summarised in
the discussion and technical Appendices A through to E.

Population

(a) The modelled population consists of people aged 15-59 years who are divided into nine separate
5-year age groups (Table VI). Limiting the population to this particular age range is motivated by a pre-
sumed low level of sexual activity in people younger than 15 years and people over 59 years, although
any extensions to these ranges is not precluded by our methodology; 5-year age groups are commonly
used for reporting results of surveys and trials including the one providing the sexual behaviour data for
our model (for example, [30,31,49]); (b) the modelled population is constant over time; consequently,
immigrants and temporary visitors are not accounted for, which may be an important simplification for
Australia whose population has been steadily growing because of immigration; furthermore, Australia is
a popular destination for young travellers who often maintain a high level of sexual activity; (c) mortality,
although formally implemented, is not caused by HPV infection but rather serves as a convenient way of
removing individuals who do not contribute to the HPV transmission because of advanced age signified
by a cessation of sexual activity; (d) the number of men in the whole population and every sexual-activity
or age group is equal to the number of women; (e) no transition between genders is allowed (i.e. men
cannot become women and vice versa);

Sexual behaviour

(a) The modelled population is heterosexual with all people belonging to one of four sexual-activity
(risk) groups (group 1 being the least active and group 4 the most active); the proportions of the popu-
lation in each of risk groups 1-4 are 0.6, 0.27, 0.11 and 0.02, respectively, as determined in [16] using
the Australian Study of Health and Relationships (ASHR) data [50] (Table A.1); it has to be noted that
the assumption that these proportions are constant and have not changed since ASHR was conducted
is reasonable because we do not want to complicate our model by utilising time-dependent proportions
not supported by any data describing their dynamics; ASHR is the only comparatively reliable data
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source we currently have, and we are not aware of any indications of recent substantial changes in sex-
ual behaviour of the Australian population; (b) people are ‘born’ into a particular risk group and can
never leave this group, but their activity level is a function of their age; this restriction implies, for exam-
ple, that even when someone from the most active group gets older, his or her activity level declines
but does not drop to the level of representatives of a less active group of the same age; (c) the annual
sexual partner change rate for an individual is fully specified by his or her age group and risk group; the
manner in which an individual of a given age group, gender group and risk group ‘chooses’ partners of
the opposite gender and of a given age group and risk group is described by means of a sexual mixing
matrix (discussed in section 2.1);

Human papillomavirus transmission and seropositivity

(a) We assume that people seek treatment immediately upon becoming aware that they have genital
warts; (b) we associate seropositivity exclusively with the recovered state such that only those in the
recovered (immune) state can be seropositive. Seropositive status is lost upon removal from the recov-
ered state to the susceptible state (i.e. loss of immunity). In the context of our model, the recovered/
seropositive state corresponds to those people who have developed detectable antibodies to HPV-6/-11
through an immunogenic response. Conversely, the recovered/seronegative state corresponds to those
who have recovered and are immune to reinfection but have not developed detectable antibodies. In
general, seropositivity can serve as a long-lasting marker of ongoing or prior infection, although not a
particularly reliable one in the case of HPV as only a proportion of those exposed to infection develop
detectable antibodies [31]. Furthermore, there is some evidence suggesting that seropositivity may be
simply a marker of previous infection and an individual who is seropositive may not necessarily be
immune [51]. Such a perspective would lead to a more complicated model structure, and we therefore
do not focus on it in this paper. However, the methodology we develop can be extended to this context.

Comments on assumptions and sensitivity studies

The development of these assumptions is a combination of informed decisions regarding expert med-
ical opinion on the proposed model and the population under study, combined with considerations of
the quality and properties of the data under study. They take into account the complexity and intrica-
cies of the system under investigation and allow modellers to address parsimonious model specifications
that capture some of the most relevant features of the HPV transmission dynamics in the population.
Because the focus of the study revolves around Australian sexual behaviour data, we also consider such
assumptions in light of the target population and the data source provided by the ASHR study.

In addition, we note that the implications of these assumptions are that we can provide a tractable
model to address the public health implications arising from direct modelling of HPV-6 or HPV-11
required to analyse the impact of vaccination programmes (recall that we have in mind Gardasil vaccine
against HPV-6, HPV-11, HVP-16 or HPV-18 currently used in Australia) on the genital warts incidence
in the Australian population.

We specifically mention the following points regarding the modelled age groups and the considera-
tion of heterosexual populations. With regard to age group stratification, we note that it has been reported
[52,53] that the median age of sexual debut is 16 years in Australia. This therefore may suggest that there
are sexually active individuals younger than 16 years old. However, the challenge here is that we do not
have any representative data that could help us quantify the level of their activity. The ASHR study,
which we use as the primary source of sexual behaviour information, only included people 16 years and
older for ethical reasons. We therefore consider this group’s influence in the model via a sensitivity study
summarised in Appendix B. This was performed by calibration of the model to the available ASHR data
under different assumptions regarding the level of sexual activity in the under-15 years age group.

The older portion of the population of ages 60 years and older was not incorporated into our model.
This was motivated by the results of the ASHR study, which demonstrated that the annual sexual part-
ner change rate in this cohort was both very low and approximately the same for people 45-59 years
old. We had no reason to think that the 60 years and older individuals are more active than the younger
45-59 year-old group. Taking into account the absence of any reliable Australian data describing sexual
behaviour in the 60 years and older cohort, it was assumed that ignoring this cohort in the model to
ensure an associated reduction in dimensionality was justified.

Regarding the decision to study only the heterosexual population in the ASHR survey, we note that it
has been estimated that there are approximately 158 000 men who identify themselves as heterosexual
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but have some history of sexual contacts with other men and 148 000 who identify themselves as gay
or bisexual ([54] on the basis of ASHR) in Australia. They are commonly referred to as men who
have sex with men (MSM). Whereas it may be reasonable to model the strictly homosexual pop-
ulation separately (because they mix sexually only with other members of this group and not with
those who identify as strictly heterosexual), the rest of MSMs would ideally be incorporated into
our model. Unfortunately, there is a challenge associated with this as there are currently very lim-
ited data on their sexual behaviour patterns, making their inclusion the subject of future research and
survey design.

To further provide insight into our model in light of these assumptions, we provide three technical
appendices undertaking the following sensitivity studies relating to model assumptions and Bayesian
prior specifications:

Sensitivity study 1—Adolescents <15 years and their influence on calibration (Appendix B)

This study presents the effect of the assumption that there are sexually active individuals younger than
15 years on model calibration to age-specific seroprevalence and genital warts incidence for each gender.

Sensitivity study 2—Sensitivity of calibration to prior specifications on duration of
immunity (Appendix C)

This study presents the sensitivity of the class of developed models to the prior specifications and
assumptions discussed relating to the duration of immunity. In particular, we again focus on the cali-
bration to seroprevalence and new diagnoses in each age bracket per gender. Sensitivity studies incor-
porating prior specifications allowing for a range of durations of immunity in the population, involving
relatively short durations specified in the priors for 10-15 years, medium-range durations of 20-25 years
and long-range durations of immunity of 40-45 years were assessed.

Sensitivity study 3—Sensitivity to birth and death process assumptions (Appendix D)

This study presents the sensitivity of developed models to the prior specifications and assumptions
relating to the population growth characteristics. Considering that the studied population and sexual
behaviour survey data utilised is Australian, we consider the application of Australian Bureau of
Statistics (ABS) population census data for age-specific birth rates (ABS 3021.0 population by age and
sex) and death rates (ABS 3302.0 population by age and sex). These rates are averaged over the defined
age strata and applied to the dynamics in the ageing structure in the model. Again, the focus involves the
calibration to seroprevalence and new diagnoses in each age bracket per gender.

Sensitivity study 4—Sensitivity to prior elicitation from previous population study
characteristics (Appendix E)

We consider specification of the priors under two scenarios. The first involves utilising the data from
medical studies given in Table II, currently available on the model parameters (WIPm, WIPf, DWTm,
DWTYf, DAIm, DAIf) stratified by gender. Note that these data were obtained for young US university
students. Then we compare this with alternative prior specifications based on less informed prior
choices, presented in Table III.

We performed these studies for strains HPV-6, HPV-11, and HPV-6 and HPV-11 separately, focusing
on the incorporation in the technical appendices of the joint calibration to both strains.

Formulation of the model as a system of ordinary differential equations

We formulate our model as the following system of ODEs:
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. 1 1
Sg.sa = _kg,s,a (I)Sg,s,a + (Pg,s,a + Ng,s,a)/DIg + gSg,s,(a—l) - gSg,s,a
1
+ E Z(Sg,s,Q + Ig,s,9 + Gg,s,9 + Pg,s,9 + Ng,s,9) (D
8,5
X 81(a)(0.651(s) + 0.2785(s) + 0.1183(s) 4+ 0.0284(s)), (2)
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. 1 1
Ig,s,a = A[g,r,s,a(t)Sg,s,a - (I/WIPg + I/DAIg)Ig,s,a + glg,s,(a—l) - glg,s,aa (3)
. 1 1
Gg,s,a = Ig,s,a/WIPg - Gg,s,a/DWTg + gGg,s,(a—l) - gGg,s,a’ 4
. 1 1

Pg,s,a = PSCg (]g,s,a/DAIg + Gg,s,a/DWTg) - Pg,s,a/DIg + ng,s,(a—l) - ng,s,a’ (5)

1 1
Ng,s,a = (1 _PSCg)(Ig,s,a/DAIg + Gg,s,a/DWTg) - Ng,s,a/D]g + gNg,s,(a—l) - gNg,s,w (6)

Here the capital letters denote the number of people in a compartment, and the subscripts denote gender
(g; for men g = 1, for women g = 2), one of the four sexual-activity groups mentioned previously
(s € {1,...,4}) and an age group (a € {1,...,9}); the dot denotes a derivative with respect to time;
8i(a), i = 1,2,3,4 is the Kronecker delta function, equal to 1 if a = i or 0 otherwise, and the system
coefficients are as in Figure 1. We should emphasise that all coefficients in the model formulation are
gender specific, that is, they can take different values for men and women. System (2)—(6) contains a
number of terms describing the process of ageing. Each age group in our model comprises a 5-year band
with the same number of people of every age included in the band. Hence, members of the population
age (i.e. move to the next age group) at a yearly rate of 1/5. To maintain a constant population size,
we assume that there is an inflow of people into the susceptible compartment of the youngest age group
(group 1) as defined by the following:

1
0 Z(Sg,s,9 + Ig5,0+ Ggs0 + Peso + Ngys,9)81(a)(0.685,1 + 0.2782(s) + 0.1183(s) + 0.0284(s)).
g,

We obtain this term by dividing the total number of individuals leaving the oldest age group (group 9)
each year on reaching age 60 years, (Sg,5,0 + Ig,5,0 + Gg.5,0 + Pg 5,0 + Ng 50)/5, evenly between two
genders and four sexual-activity groups. We add Sg 51 to every g and s according to the previously
defined distribution of the population across risk groups (Table A.1). The implementation of ageing is
a mechanism for people to enter and leave the sexually active population continuously and is necessary
to propagate the effect of vaccination: we must ensure that vaccination of individuals in a particular age
group will later contribute to the number of vaccinated individuals in older age groups.

Each of Equations (2)—(6) describes the change in the number of individuals that occurs during a small
time period as the sum of the number of individuals entering this compartment from other compartments
and those leaving the compartment. Discussions on construction of compartmental disease transmission
models are presented in [23] and [24]. Consider, for example, compartment G (Figure 1): we can
calculate the change in the number of individuals in this compartment during a small interval of time by
adding up the individuals entering the compartment during this time interval (the infected who devel-
oped genital warts, /g 5,/ WIPg, and the ageing members of G from age group a — 1, G4 5,4/5) and
subtracting the number that leave the compartment (recovered who go either to P or N, Gg 5a/DWTy,
and the ageing members of G moving to age group a + 1, G4 54/5). In so doing, we will obtain
Ig5.a/WIPg + Gg 5. (a—1)/5— Gg,5,a/DWTg — Gg 5 4/5, which is the right-hand side of Equation (4).

It is necessary to point out the crucial role of the force of infection (7) in our model. This is the only
non-constant coefficient we have to deal with, which introduces nonlinearity into the system (2)—(6).
Its specification utilises a matrix usually known as a ‘sexual mixing’ matrix [8], which describes
age-specific and risk group-specific patterns of sexual behaviour in a population.

In the following subsection, we provide a concise description of the construction of the sexual mixing
matrix. For complete details, we refer the reader to Appendix A and an associated research paper [55].

2.1. Sexual mixing matrix

In this section, we present the construction and extensions developed for statistical modelling of the
sexual interaction of members of the population, as defined by the sexual mixing matrix. We consider a
Sexually Transmitted Infection (STI) transmission model that has many features in common with other
STI models, for example, the models for gonorrhoea in [56] or those developed for HIV in [55] and [57],
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which describe patterns of mixing between age and sexual-activity groups with respect to HIV in hetero-
sexual communities. Like these other models, our approach relies on certain assumptions about the way
individuals form their sexual partnerships. This partnership formation process is commonly referred to
as ‘sexual mixing’. We can describe a simplified model for sexual mixing via a sexual mixing matrix as
described in [8], for which examples can be found in [55,58-60].

It is common practice in the medical literature to assume the parameters of this mixing matrix to
be known throughout the calibration of the resulting ODE epidemic model [58]. This is because these
parameters are normally derived from the data obtained from an extensive sexual behaviour survey,
which often serves as the only comparatively reliable source of information on the subject. Therefore,
if the number of participants in a particular survey is significantly larger than in other surveys, this
survey will likely be considered as the most trustworthy source of information on sexual mixing, often
irrespective of the experimental design and population studied. However, because of the personal nature
of such surveys, it is understood that their results are to be taken cautiously. In our model, we will
assume that two of the parameters specifying the sexual mixing matrix are unknown and should be
jointly estimated with the ODE model parameters.

In our heterosexual model formulation, the mixing matrix is a (2 x 4 X 4 x 9 x 9) dimensional matrix
comprising the terms c; s.5".a.» Which are the mean per capita annual rates at which an individual of
gender g from a risk or activity group s and age group a acquires new sexual partners of the opposite
gender g’ from a risk group s’ and age group a’; pg 5.5 a.a’ is the conditional probability that an individ-
ual of gender g from sexual-activity group s and age group a acquires a sexual partner of the opposite
gender g’ from sexual-activity group s’ and age group a’. It is clear that estimation of all of these param-
eters is an almost insurmountable statistical challenge, which is one of the reasons why these parameters
are often taken as fixed in any given calibration study of STI transmission models. There are two broad
approaches one could pursue. Given that we are working in a Bayesian modelling framework, the first
approach would involve prior elicitation for these population parameters on the basis of expert opinions
of annual interaction rates that would be reasonably understood by medical practitioners in sexual health
clinics, sexual health workers and social workers in regions in which respondents were recorded. The
other alternative involves re-parameterising aspects of this matrix, simplifying it significantly, allowing
one to account for the uncertainty associated with specification of this matrix in an appropriate simplified
stochastic model. This would involve finding suitable factors common to aspects of this matrix that could
instead be taken as stochastic and estimated in the model calibration, which in turn allow one to derive
each element of the sexual mixing matrix. Most importantly, the framework we develop and present for
the estimation and calibration of the transmission model is general enough to be used for either of these
approaches and any degree of unknown parameters in the sexual mixing matrix and any parameterisation
deemed suitable for a given population study.

In this paper, we then utilise this matrix to specify the force of infection (see Equations (2) and (3)) for
any individual from any subgroup (g, s, @). This term is effectively a yearly rate at which an individual
becomes infected, and it is defined as

) P

g's'a

Agsa=Bg Y cs )

g,8,a g ,8,8" a,a’ ’
—F Sg'sta + gt sa + Gy 5ot + Per ot + Nyt st a0

where f; is the transmission probability per partnership, that is, the probability that a susceptible per-
son of gender g will become infected from his or her infectious partner of gender g’; c;, s.5'.aq 1S the
mean per capita rate per year at which an individual from g, s,a acquires new sexual partners from
g.s'.a' and Iy g o/ (Sgrsrar + Ig'wa + Gg s + Pgr v + Ngv s o) is a proportion of infected
individuals in g, s, a, which defines the probability that a new sexual partner from g, s, a is infected.

As discussed in [55], we can easily incorporate into the specification of (7) several parameters allow-
ing us to control to what extent the matrix should reflect assortative partnership formation patterns, that
is, how likely individuals are to find sexual partners among ‘similar’ individuals, thereby altering the
properties of the matrix, making it more or less dense. For example, we can vary the extent to which
older men prefer to have younger female sexual partners, or, possibly, a tendency of older women to
choose younger male sexual partners. It is also necessary to be able to account for the readiness of each
gender to compromise with the wishes of the opposite gender. This last point becomes significant when-
ever the supply of individuals of one gender does not meet the demand for sexual partners from the
individuals of the opposite gender.
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In this paper, we treat the degrees of assortativity by age and sexual-activity groups, observed to have
a noticeable effect on the model calibration, as uncertain, whereas the rest of the sexual mixing matrix
parameters are fixed. We do not assume that all of the parameters specifying this matrix are unknown
because we want to keep the total number of parameters in our model as low as possible.

Although a matrix with these features cannot encompass all the complexities of human sexual mixing,
it certainly enables us to explore various relatively plausible mixing scenarios. In addition, it is a man-
ageable model formulation, and this framework has been widely used by STI modellers (for examples
of its use in HPV models, see [12,16,61,62]).

3. Bayesian framework for nonlinear ordinary differential equation human
papillomavirus epidemic model

In constructing a statistical model for the HPV epidemic model, we treat the parameters of the non-
linear system of ODE equations describing the epidemic as unknown random variables. In addition,
we treat some of the parameters of the sexual mixing matrix associated with assortativity as unknown
random variables to be estimated jointly with the ODE epidemic model parameters. We formulate a
Bayesian model for this system with the prior specifications given in Table I. Furthermore, we treat
the ODE system as purely deterministic, conditional on a set of system parameters. In other words, the
trajectories of the latent states in the ODE system over time are conditionally deterministically spec-
ified by the system of ODEs. Therefore, we do not derive a system of SDE as has been done in the
Pharmaco-Kinetic/Pharmaco-dynamics literature (see [63] or [64]). Instead, our focus lies purely in the
‘calibration’ of this ODE epidemic model to an observed set of data based on observations that are
formed by a transformation of the state of the ODE system and observed in noise. We detail the process
of forward projection we utilise to obtain the state of the nonlinear ODE system at any given time point,
conditional on the model parameters defined in Section 3.1.

3.1. Forward projection of the nonlinear ordinary differential equation model

The states of the system at time points ¢ € {1,...,7} are denoted by vectors Xg,s(1 : T) =
(Xga,s(1),....Xg4s(T)], which generically represent the dynamic evolution of the ODE system,

Table I. Prior specification for nonlinear ODE models for HPV-6 or HPV-11.

Parameter Interpretation Prior

Nonlinear ODE model parameter priors

Transmission probability (men) TRm U|[Ba, Bb]
Transmission probability (women) TRf U|[Ba, Bb]
Average genital warts incubation period (men) WIPm Ga(kwipm, Owipm)
Average genital warts incubation period (women) WIPf Ga(kwipr, Owipr)
Average duration of genital warts treatment (men) DWTm Ga(kpwrm, Opwrim)
Average duration of genital warts treatment (women) DWTf Ga(kpwry. Opwry)
Average duration of asymptomatic HPV infection (men) DAIm Ga(kpaim, Opaim)
Average duration of asymptomatic HPV infection (women) DAIf Ga(kpair. Opar)
Average duration of immunity (men) DIm U(kpim, Opim)
Average duration of immunity (women) DIf Ul(kpir. Opir)
Probability of becoming seropositive (men) PSCm Be(apscm, Brscm)
Probability of becoming seropositive (women) PSCf Be(apscr. Bpscr)

Observation error parameters priors

Diagonal element of the observation error covariance matrix
for incidence ¥ = diag(o) o invGa(kg, O5)
Observation error scale for seroprevalence Ay Ga (k Ay 04y )

Mixing matrix parameter priors

Degree of assortativeness by age group EPSa Be (otfa , ﬂga)
Degree of assortativeness by risk group EPSr Be (Dler , ﬁer)

Note that the nonlinear ODE model parameter priors can all be assumed non-informative.
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where for a given gender, age and sexual-activity group at time ¢ the state encompasses the follow-
ing components X ¢ 4 5(t) = [Sg.a,5(t). g,a,5(t). Gg.a,s(t), Pga,s(t), Ng a,s(t)]. Therefore, conditional
on a set of parameters in the ODE system, we can iterate the ODE system forward in time using an ODE
solver to obtain the states for each population group at time 7. Note that the times 7, for which the system
is solved, will generally be of a much finer granularity than those at which observations are collected in
a population study. This set of times should include at least the observation times.

In our estimation procedure, we considered several different solvers and noticed that the choice of
solver can have a significant effect on the accuracy and on the efficiency of the computations undertaken
in the statistical estimation. In particular, depending on parameterisation and development of the rela-
tionships between states or compartments of the model and parameterisation of the mixing matrix, one
can obtain non-stiff or stiff systems of equations. In this context, the concept often referred to as stiffness
involves the fact that solving numerically a large system of coupled ODEs can be numerically unstable
unless the step size is taken to be extremely small. Given the dimensions of the problems we consider
and under an AMCMC procedure, such small step sizes make repeated application of generic solvers
computationally inefficient (see discussions in [65]).

Hence, to overcome these complications, the software implementation of the framework described in
the paper was written in Fortran 90/95/2003 and utilised a universal solver dodesol, which is a part
of the Intel® Ordinary Differential Equation Solver Libraryﬁt This solver is, in fact, a collection of five
different solvers designed to solve numerically initial value problems of the form

x =g(x,t), x(to) = xo, t > 1o, (8)

where ¢ is an independent variable, x is a vector of state variables to be solved for and g(x,?) is a
function of # and x.

An important distinction between these solvers is that each of them being of explicit, implicit or hybrid
type is particularly efficient for a given degree of stiffness of the system. The universal solver first esti-
mates how stiff the system is and then uses an appropriate solver to handle it. It is pertinent to note that
in the case where (8) can be solved explicitly, a modification of the fourth-order Merson’s method com-
bined with a first-order multi-stage method will be applied. Should (8) be treated implicitly, an L-stable
fourth-order (5, 2)-method with an option to fix the Jacobian will be used.

We chose the dodesol solver not only because of its convenient FORTRAN interface, for which the
remainder of the model and code was developed, but also because of its efficient performance, which we
compared with that of the two standard MATLAB solvers ode45 and odel5s. The solver dodesol
was especially superior to those provided by MATLAB solvers ode45 and ode15s when the stiffness of
our ODE system increased. However, it should be pointed out that dodesol speed can be considerably
affected by the selection of its minimal time step and relative error threshold. To obtain the simulation
results discussed in this paper, we use the minimal step size 1 x 10719, the initial step size 1 x 107 and
the relative error tolerance 1 x 1073, Also, we do not make use of the option to pre-specify the Jacobian
provided by the solver.

3.2. Prior choices for parameters of nonlinear ordinary differential equations and the sexual
mixing matrix

In developing the prior specifications for the model, one has options of hierarchical prior specifications
versus assumptions of independence. In the case of the model parameters proposed, shown in Table I,
we summarise the state of medical literature and the limited knowledge of such model parameters in
Table II. However, medical opinion in the referred to papers and associated literature indicate that an
assumption of a priori independence is reasonable. As more sexual survey data become available, we
can further test these assumptions for the Australian population.

We consider two cases for the prior specification:

Case 1 Specification of hyper-parameters in the priors for (WIPm, WIPf, DWTm, DWTf, DAIm, DAIf)
stratified by gender, to information provided in Table II based on US studies. Detailed prior
specification based on moment matching and elemental percentile methods, and calibration
processes are provided in Appendix E.
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Table II. Data from medical literature, which aid in specification of prior hyper-parameter values for the
HPV-6 or HPV-11 model.
Men Women
Duration of (years) Value 95%Cl1 Source Value 95%Cl1 Source
Genital warts incubation period, median ~ 0.916 0-1.341 [66] 0.241 0-0.475 [67]
Treatment for genital warts, mean 0.281 0.213-0.349 [68] 0.232 0.185-0.280 [68]
Treatment for genital warts, median N/A N/A N/A 0.491 0.325-0.666 [68]
Untreated infection, median 0.45 0.425-0.475 [49] 0.5 0.475-0.575 [51]
Untreated infection, mean N/A N/A N/A 0.7916  0.575-1.0 [51]
Table ITI. Selected prior distributions actually used in our simulations.
wIP DAI DWT
6 Men U(0.9,1.3) U(2.2,3.6) Ga(92.00,0.003)
Women U(0.6,0.9) U(2.2,3.6) Be(69.00, 231.00)
" Men U(0.9,1.3) U(2.0,3.6) Ga(92.00, 0.003)
Women U(0.6,0.9) U(2.0,3.6) Be(69.00,231.00)
6/11 Men U(1.0,2.0) U(3.8,4.8) Ga(92.00,0.003)
Women U(1.0,2.0) U(3.8,4.8) Be(69.00,231.00)

Whereas DWT is in agreement with the real data, WIP and DAI were allowed
to take values beyond their reported ranges (Table II).

Case 2 Prior specifications developed for Australia based on ASHR background supplementary
information, provided in Table III.

The first studies the ability to accurately calibrate our model to the Australian sexual behaviour ASHR
data, based on existing knowledge of suggested associated parameter values obtained from alternative
empirical studies. The interest here is in the effect of sensitivity to different population studies and
dynamics. This is then compared with priors developed for Australian populations.

In both prior specification cases, parameters for which there is an apparent lack of medical knowledge,
(TRm, TRf, DIm, DIf, PSCm, PSCf), were specified for both men and women as uninformative. Results
of the performed sensitivity studies are provided in Appendices B-E.

We summarise the distributional prior choices made for each of the model parameters (Table I) by the
following basic prior structure:

p(TRm,TRf, WIPm, WIPf, DWTm, DWTf, DAIm, DAIf, PSCm, PSCf, DIm, DIf, ¥, Ay, EPSa, EPSr)
= p(TRm) p(TRf) p(WIPm) p(WIPf) p(DWTm) p(DWTf) p(DAIm) p(DAIf) p(PSCm) p(PSCf)
x p(DIm) p(DIf) p(X) p(Ay) p(EPSa) p(EPST). 9)

We also note that, when specifying the prior distributions and their hyper-parameters (i.e. parameters
describing the shape of distributions assigned to the prior distribution parameters), we utilise data
reported in the literature from previous studies of HPV transmission to inform some appropriate prior
specifications (Table II). Importantly, these data are completely different from the real data sets that were
studied in the present paper, on the basis of different populations, different time periods and different
locations; hence, we have not used our observation data twice. As is usually the case with interpreting
any reported HPV data, it is appropriate to consider the reported values of observations and calibrations
as estimation with limitations and proneness to error. This means that we can safely consider values out-
side of the reported confidence intervals (CI) to be plausible in our study. Using the real data (Table II),
we specify the priors for each of the HPV models (Table I).

The technical detail regarding the statistical moment matching and elemental percentile approach
to the prior specification to existing literature is provided in Appendix E. In addition, we provide in
Appendix E the relationship between the model parameters and the existing state of partial knowledge
from previous US studies.

The prior parameters for seroprevalence observation errors denoted by Ay had hyper-prior parameters
given by (k gm, 04m) = (2,2), and the diagonal element ¢ of the incidence observation error covariance
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matrix was distributed according to (kq, 05) = (2,5). Finally, the priors for the sexual mixing matrix
parameters associated with assortativity had hyper-priors specified according to (e, . Be,) = (0.5,0.7)
and (e, , Be,) = (0.5,0.7).

3.3. Likelihood model for parameters of nonlinear ordinary differential equations and Garnett
mixing matrix

Having specified the prior structure of the model, we present the observation model, likelihood and
details of the actual data studied. In particular, we note that, conditional on a particular realisation of the
model parameters in Table I, the latent unobserved state trajectories of the system are deterministic, non-
analytic solutions to the system of ODEs in Equation (6). These solution trajectories are transformed
according to age group, gender group and risk group to produce a set of results that can be directly
observed in noise in the population under study. In the following section, we will describe and detail
these transformations and the associated statistical assumptions made on the observation error. In doing
so, we will also specify models suitable for situations of disequilibrium of the disease states within the
population such as what occur after a serious outbreak, a vaccination or community education awareness
programme, and so forth, and models for situations in which the disease in the population under study
can be considered to be at equilibrium.

In this section, we first describe the observations that are utilised in the calibration of the ODE
epidemic model and the sexual mixing matrix. Importantly, the real observations utilised in this paper,
based on HPV-6 or HPV-11 data collected in Australia, are treated as taken from a population at
endemic equilibrium.

Then we present the resulting likelihood model utilised, followed by the derivation of the posterior
distribution. We first note that the general likelihood model will be presented, in which observations of
the transformed state trajectories are known at a fixed set of discrete time points ¢ € {1,2,...,7T}. In
practice, these discrete time points may be unevenly spaced, and this would not affect the estimation
procedure to be developed.

The actual observations we consider in this model are seroprevalence and genital warts incidence by
age group, which make up the ‘observations’ considered in our model. They are specified as follows:

Seroprevalence 1is the proportion (or percentage, in our model) of individuals in a given group who are
recovered and seropositive.

Genital warts incidence is a rate defined as the number of new cases of genital warts in the population
per person (or per 1000 persons, in our model) per year.

In order to evaluate the output of our model, we intend to compare it with the real-life seroprevalence
[31] and genital warts incidence [30] data. The seroprevalence data were collected in the second half of
2005 from various laboratories in New South Wales, Victoria and Queensland, where about 80% of the
Australian population resides. We applied a validated sampling method for serosurveillance to test 1523
serum samples from women and 1247 samples from men aged from O to 69 years. For each individ-
ual, the age group, sex and date of sample collection were recorded. We derived the overall population
HPV seroprevalence by weighting the results obtained from the samples to 2005 Australian midyear
population estimates by age. Incidence data were estimated from the Bettering the Evaluation of Care
and Health (BEACH) cross-sectional database. In particular, we analysed the annualised new case con-
sultation rate stratified by gender and age from April 2000 to September 2006 and normalised this to
the corresponding 2004 Australian population. In total, 639 consultations related to genital warts were
registered, and of these roughly 35% were new cases. BEACH did not capture data on the people who
attended sexual health clinics to seek treatment for genital warts. However, it was estimated that for
every person visiting a GP there was 0.298 persons visiting a sexual health clinic, so the genital warts
cases managed in such clinics were accounted for by multiplying the incidence rates obtained from the
GP data by 1.298. We summarise the data in Tables IV and V.

Generally, in this model we can consider observations as arriving at irregularly spaced intervals and
generally not at all times ¢ € {1, ..., T'}. For simplicity, we will assume that a full panel of observations
for all age groups, activity groups and genders is available at each observation time, although we can
also relax this assumption under the model developed in this paper. We will also assume for simplicity
that because we can solve for the state of the nonlinear system at any specified time point conditional on
a set of model parameters, we will always have the observation time corresponding to one of the time
points t € {1,...,T}.
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Table V. Genital warts incidence data for Australia measured as the mean
number of new cases per 1000 persons per year (as reported in [30]).

Age group Men Women

No. Ages (years) Mean 95%CI Mean 95%CIl

1 15-19 1.66 0.46 - 2.86 7.28 4.18 -10.38
2 20-24 6.27 3.77-8.77 8.61 5.61-11.61
3 25-29 7.4 44-104 6.37 3.77-8.97
4 30 -34 4.64 2.44 -6.84 4.33 2.13-6.53
5 35-39 2.34 1.34 -3.34 2.19 1.19-3.19
6 40 -44 2.34 1.34 -3.34 2.19 1.19-3.19
7 45 -49 0.83 0.33 -1.33 0.48 0.08 —0.88
8 50 - 54 0.83 0.33 -1.33 0.48 0.08 —0.88
9 55-59 0.83 0.33-1.33 0.48 0.08 —0.88

We model the observation vector as the result of a vector function of the nonlinear ODE system state
X ¢ a5, at each time ¢, denoted by Oy 4 5(t) = [Dg a,s(t). Yg.a,s(t)], which contains the observation
Dy q,5(t) representing incidence at time ¢ for a given gender, age group and sexual-activity group as
well as Yy 4,5 (¢), which represents the seroprevalence in the given category.

We assume the observed numbers of new diagnoses to be observed in Gaussian noise. This assumption
is reasonable as the counts obtained are very large, so it is suitable to make a continuous distributional
assumption. We assume the likelihood model for the observed seroprevalence to be a beta distribution
because it represents observations of proportions given the parameters. Furthermore, conditional on the
parameters of the model, we assume the joint likelihood model to have the following conditional inde-
pendence properties between observations conditional on information on the individuals’ categories of
gender, age and activity group as follows:

L(TR, WIP, GWT, DAL, PSC,DI, X, Ay, EPSa, EPSry X ¢ 4 s(1), ..., X g 0.5(T); Og 0. s(1), ..., 0g4.4(T))

.
IT TI II TI1P(Ocas@®ITR, WIP,GWT, DAL PSC,DL =, Ay, EPSa, EPSr, X ¢ .4.5(t))

ge{l.2yas{l...., 9} se{l...., 4y t=1
T

= [ TI [T I]P(Dews(®ITR, WIP, GWT, DAL PSC, DL, 3, EPSa, EPSr, X ¢ 4 4(t)) (10)
gef{l.2}asil,..., 9} sedl,..., 4y t=1

X P(Yg..,(t)|TR, WIP, GWT, DAL PSC, DI, Ay, EPSa, EPSr, X ;.o s(t))

T
=1 I TI [V(Peas®sitn,,.cr00,00) BeWea@): Ay, By),

gel{l.2yaell..... 9} sefl..... 43 1=1

where we denote in bold the vectors of parameters corresponding to men and women. For example,
T R = (TRm, TRYf); the equilibrium mean structure for the genital warts incidence in category g, a, s is
defined as
KD,y = J(TR,WIP, GWT, DAL PSC, DI, X, EPSa, EPSr, X g,a,5(1))
1 Il 11
x £ x 1000, (b
WIPg Sg,s,a + Ig,s,a + Gg,s,a + Pg,s,a + Ng,s,a

which is a function of the state vector at time ¢ and the model parameters. The multiplier 1000 appears
here because we compare the simulated incidence with the real incidence data reported per 1000
individuals [30].

In this paper, we always consider gender to be male or female coded with a 1 or 2, respectively, sexual
activity to be split into four classes coded with 1, 2, 3, 4, and ages as decomposed in Table VI coded by
the indices 1 through 9. We have to stress that (11) is valid only under the assumption that our model is
at endemic equilibrium. Otherwise, the incidence would be time dependent: for any two time points, #y
and 7 such that #{ =7y + 1 (they are 1 year apart) would be given by the following:

_ 1 Ig,s,a ([0)
”'Dg a s(zl) - x
o WIPg Sg,s,a (IO) + Ig,s,a (10) + Gg,s,a (IO) + Pg,s,a ([0) + Ng,s,a(IO)
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x 1000.  (12)
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Table VI. Relative new sexual partner acquisition rates by age group.

Age group

No. 1 2 3 4 5 6 7 8 9

Age (years) 15-19 20-24 25-29 30-34 35-39 40-44 4549 50-54 55-59
Rate (r4) 5.28 6.06 4.37 2.57 1.61 1.43 1.00 1.00 1.00

Note that we have obtained the state vectors for the system X, 4 s(¢) used in the evaluation of the
likelihood model via forward simulation, conditional on the model parameters of the nonlinear ODE
model, ensuring that the solution points at which we evaluated the states of the system at least corre-
sponded to the observation times ¢ € {1,...,7T} and generally would be a finer grid than these time
points. We achieved this using a specialised ODE solver as described previously in Section 3.1.

Additionally, we also define the observation equation for the likelihood corresponding to the sero-
prevalence observations for each age group, activity group and gender, as a function of the nonlinear
ODE system state and model parameters, which were specified according to a beta distribution specified
in Equation (13):

Yg.a.s(t) = g(TR, WIP, GWT, DAL PSC, DI, Ay, EPSa, EPSr, X ¢ 4.5(1))

Pg s, (13)
Sg.sa+Igsa+Gesa+ Pgsa+ Negsa

We treat the scale parameter Ay of this beta prior as a random variable and estimate this in the poste-
rior inference. The shape parameter, denoted by By, is obtained by moment matching given the sampled
scale parameter and the observations obtained from the current forward projection trajectory:

1
By = Ay (—Yg,a,s(l) — l) . (14)

We may then combine this likelihood and prior structure to obtain the posterior distribution of the
model parameters, given the observations. We give the full posterior distribution of interest in Equation
(15), and this comprises the likelihood model in Equation (10) and the prior model in Equation (9):

p(TR, WIP, GWT, DAL PSC, DI, =, Ay, EPSa, EPSr|O ¢ 4 s(1), ..., O 4.0 (T))
o L(TR, WIP, GWT, DAL, PSC, DL, £, Ay, EPSa, EPSr, X c.as(1), ..o, X 6.0s(T); O gas(1), ..., 040 s(T))
X p(TRm) p (TRf) p(WIPm) p(WIPf) p(DWTm) p(DWIY) p(DAIm) p (DAIf) p (PSCm) p (PSCf)

x p(DIm) p(DIf) p(X) p(Ay) p(EPSa) p(EPST). a@s)

The resulting posterior distribution therefore has 16 model parameters. At each time point ¢, the for-
ward simulated ODE state vectors X (t) € R3%°, because of two sexes, nine age groups, four activity
groups and five compartments. Hence, the total dimension explored in the simulation performed in the
results section is 360 x T', where we set T = 120.

Next we demonstrate how to perform inference under this Bayesian model formulation. In particular,
we are interested in the Bayesian point estimators corresponding to the posterior mean (MMSE) and the
posterior mode (MAP) estimates, as well as the distribution properties of the posterior. To explore these,
we must resort to a numerical procedure to draw samples from the posterior distribution. The class of
methods we consider in this paper involves combining the forward simulation procedure for solving the
nonlinear ODE system, given a set of model parameters, with an AAMCMC algorithm to propose a new
set of model parameters given the history of proposed parameter vectors. We present the details of the
AdMCMC methodologies considered in Section 4.

4. Adaptive Markov chain Monte Carlo strategies combined with
forward simulation

In this section, we present details for the AAMCMC algorithm that we will combine with the forward
simulation algorithm in order to sample from the posterior distribution given in Equation (15). In particu-
lar, we first introduce the background of an AAMCMC algorithm before detailing the adaptation strategy
we explore in this paper on the basis of the adaptation rules developed in [41,44].
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In essence, we first construct a MCMC proposal distribution to sample the static posterior parame-
ters, denoted by vector @ = [TR, WIP, GWT, DAL, PSC, DI, X, Ay, EPSa, EPSr]. Then, conditional
on these model parameters proposed, we obtain the state trajectories for the ODE HPV epidemic model,
givenby Xg05(1:7) =[Xg4s(1)...., Xg,a,s(T)], which we generate using forward simulation. The
parameter vector ¢ parameterises the MCMC proposal distribution. The idea of AAMCMC methods is
to learn appropriate values for @ recursively utilising the previous samples of the Markov chain that have
been accepted under the MCMC accept-reject mechanism. We achieve this on-line, adapting according
to the support of the posterior distribution, thereby allowing the Markov chain to discover and explore
the regions of the posterior distribution that have the most mass. Through this on-line adaptive learning
mechanism, the Markov chain proposal distribution can significantly improve the acceptance rate of the
Markov chain, enabling efficient mixing and improving the samples obtained from the posterior.

In this paper, we consider a popular adaptation scheme proposed in the literature and analyse its ability
to explore the very high dimension of the posterior distribution developed in the nonlinear HPV
epidemic model. Before presenting the details of the adaptation scheme for the Markov proposal, we
first present the generic algorithm developed for sampling from the posterior in Equation (15). In the
following sequence of steps for the jth iteration of the AAMCMC forward simulation algorithm, we
will update the state of the Markov chain from OU~Y with corresponding states X Y _1)(1 . T), to

g.a.s
parameter vector O with associated state trajectories X fgf ()l o1+ T). We summarise this algorithm

subsequently for one step of the AAMCMC forward project algorithm:

1. Sample 8* ~ ¢([8](; — 1),-) from an AMCMC proposal constructed using previous Markov
chain samples {@ ..., @0~}
2. Solve the nonlinear ODE system (2)—(6) by running a forward simulation of the nonlinear ODE
solver conditional on proposed parameter vector 8, to obtain the state of the ODE system,
Xgas(1),....,Xg4s(T), which correspond to the observations O 4 5(1),..., Og 4.s(T).
3. Accept the proposed new Markov chain state comprising 6 * with acceptance probability given by

L0 0gas(D). . Ogas(T)p(0%)q (097067
c (00—1); 0gas(D)..... og,a,s(r)) » (0<f—1>) q (0*, 00—1))

(0(’ D 0) min | 1,

where we evaluate this acceptance probability utilising the expressions developed in Sections 3.2
and 4.1. These steps are repeated for j € {1,...,J}.

4.1. Adaptive Metropolis

To complete the specification of the methodology utilised, we present the internal adaptation strategy we
consider in this paper based on the adaptive Metropolis algorithm detailed in [44]. This is a variant of
the approach proposed in [43], which develops a Random Walk Metropolis—Hastings that estimates the
global covariance structure from the past samples.

Under an adaptive Metropolis algorithm, the proposal distribution is based on a Gaussian mixture
kernel detailed in [44]. The proposal, ¢(8 Y=, 8*), involves an adaptive Gaussian-mixture Metropolis
proposal, one component of which has a covariance structure that is adaptively learnt on-line as the
algorithm explores the posterior distribution. For iteration j of the Markov chain, the proposal is

2 2
q; (o(f—w,.):y/\/(o*;o(f—n,@zj)+(1—y)f\/( :9U~D (Odl) Idd) (16)
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Here, @ = X, is the current empirical estimate of the covariance between the parameters of 8, estimated
using samples from the Markov chain up to time j — 1. Small positive constant y is usually taken equal
to 0.05 [44]. The theoretical motivation for the choices of scale factors 2.38, 0.1 and dimension d are all
provided in [44] and are based on optimality conditions presented in [69]. We note that the update of the
covariance matrix can be done recursively on-line via the following recursion (as detailed in [70]).
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- _______________________________________________________________________________________________|
5. Synthetic data analysis

In this section, we first study the performance of the AAMCMC Forward simulation methodology in a
synthetic data example. To perform this study, we utilised model parameters arbitrarily selected as

(TRm, TRf, WIPm, WIPf, DWTm, DWTf, DAIm, DAIf, PSCm, PSCf, S, Ay , EPSa, EPSr) =

(0.9,0.9,0.95,0.85,0.15,0.3,3.2,3.4,0.5,0.6,5.0,2.0,0.5,0.5)
a7)

and distributed as shown in Table III. Note that we omit DIm and DIf because we decided to assume a
life-long immunity for all individuals in the population. This simplification can easily be removed and
would not modify our estimation procedure or models developed.

With an initial population size of 10 000, we simulated trajectories of system (2)—(6) over annual
time steps for 120 years (¢ € [0, 120]), and every 10 years we calculated the synthetically generated
‘true’ state and a noisy set of observations for each age group under the specified statistical models in
Equation (10). We took these ODE state trajectories and the observations as the ‘true’ synthetic data.
Next we ran 100 000 iterations of the AMCMC forward projection sampler to obtain samples from the
posterior distribution conditional on these synthetically generated observations.

In Figure 2, we present the posterior estimates for the ODE epidemic static model parameters (calibra-
tion performance) under the Bayesian model constructed in Section 3. We illustrate this performance for
the model parameters that describe the rates of transmission between states as well as those that quantify
the statistical uncertainty we model in the sexual mixing matrix. We estimate each of these parameters
on the basis of observations generated for the number of new diagnoses (incidence) and seroprevalence
utilising prior specifications derived from previous literature studies. The important features of this syn-
thetic study are that we can illustrate that our AAMCMC forward projection sampling methodology
is able to generate samples from the resulting high-dimensional posterior efficiently and that the esti-
mated posterior parameter MMSE values and 95% posterior CI contain, in all cases, the ‘true’ model
parameters utilised to generate the data. These results demonstrate that the AAMCMC forward project
estimation procedure we developed is working accurately in this controlled synthetic study. The estima-
tion of state trajectories also confirms this. We show an example of estimated state trajectories for the
total number of men in every disease state in Figure 3. For all simulated time steps and for each disease
state, we observe that the ‘true’ trajectory is contained within the 95% posterior CI for the aggregated
trajectory, and, in addition, the estimated mean trajectory is in agreement with the ‘true’ aggregated tra-
jectory. Furthermore, we can also provide analysis of the calibration performance as a function of the
observed data versus estimated model fits to incidence and seroprevalence per age group. We compared
the 95% posterior CIs of the simulated forecast posterior calibrations with the ‘true’ synthetically gen-
erated observations and found them in good agreement, as depicted in Figures 4 and 5, for the number
of new genital warts diagnoses and the seroprevalence by age and gender.

1.4

T Thra
83

TRm TRf WIPm WIPf DWTm DWTf DAIm/5 DAIf/5 PSCm PSCf EPSa EPSr

0.2 -

Figure 2. ‘True’ model parameters (grey circles) for synthetic study versus estimated model parameters
(light grey circles) and error bars (95% posterior CI) for the model corresponding to the combined HPV-6 and
HPV-11 case.
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Figure 3. State trajectories for men in every disease state (synthetic case, combined HPV-6 and HPV-11):

‘true’ trajectories (black line), MMSE (grey line) and 95%CI (shaded area); note that in the presented case

the trajectories for seropositive and seronegative men coincide, so it is convenient to call men in either
state ‘recovered’.
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Figure 4. Calibration for synthetic case at time point = 30 (combined HPV-6 and HPV-11): MMSE (solid line)
and 95%ClI (shaded area).
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6. Calibration to the real data and results

In this section, we undertook statistical estimation and performed calibration of the ODE model to
the real data observations for HPV-6, HPV-11 and HPV-6 and HPV-11 combined. We maintained the
assumption that the duration of immunity is life-long for all individuals because we found that as immu-
nity was chosen closer to permanent the calibration became consistently better. We measured this with
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from the model for each age group and gender for seroprevalence and number of new genital warts

The first results we consider are for HPV-6 (Figure 6). The seroprevalence calibration is good for all age
groups except the youngest men and women in age groups 4 and 5. At this point, it is appropriate to
note that all data recordings and observations we obtained for the men in age group 1 can be questioned.
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We are inclined to think that the reported numbers do not represent the real-life situation as they suggest
that both seroprevalence and incidence are much lower among men in this age group compared with the
women of the same age. Considering the reported sexual partner acquisition rates (Table VI), which are
the same for men and women in age group 1, there is no apparent reason to believe that this should be
true, and the reported numbers may simply be due to young men being reluctant to seek medical assis-
tance. Another possible explanation could be that men in age group 1 have sexual partners primarily of
their own age who are not infected with HPV, whereas women from age group 1 have sexual partners
from older age groups who are likely to be infected. As for the women aged 30-39 years, their high
seroprevalence level was not captured by the model with the prior distributions specified as in Table III.
Regarding incidence, we were able to obtain a reasonable fit for both women and men. The calibration
for HPV-11 for seroprevalence was accurate (Figure 7) although not for the youngest men and women.
A similar result was observed for the combined HPV-6 and HPV-11 data (Figure 8), with the calibration
to genital warts incidence somewhat worse than to seroprevalence.
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Figure 7. Calibration for HPV-11: MMSE (solid line) and 95%CI (shaded area). The circles and associated error
bars denote the reported real data (mean values and 95%CI).
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7. Impact of vaccination via the posterior predictive distribution

In this section, we demonstrate how to further develop the modelling framework provided for the calibra-
tion of the models developed for HPV-6 and HPV-11 to incorporate a statistical analysis of the impact of
vaccination. Having undertaken a calibration via AAMCMC forward projection methodology presented
in Section 4, we obtain an empirical estimation of the posterior distribution for the model parameters
presented in Table I and the associated posterior estimates for the states at time 7" when the last obser-
vation was taken prior to a vaccination treatment. We can represent this information by the empirical
estimation of the marginal posterior distribution

p(TR, WIP, GWT, DAL PSC. DI, X, Ay, EPSa, EPSr, X .4.s(T)|Og.as(1)..... Og.as(T)).

using the N samples from the Markov chain generated by the AAMCMC forward projection algorithm.
We can then utilise this empirical distribution to obtain the posterior predictive distribution, given by the
resulting Monte Carlo approximation:

POgas(T+1),...,0¢4s(T+1)|0g45(1),...,0g45(T)) =

/p(Og,a.s (T+1),..., Og,u,S(T+‘E)|TR, WIP, GWT, DAL, PSC, DI, X, Ay, EPSa, EPSr, Xg,a.s 7),..., Xg.a,s (T+7))
x p(TR, WIP, GWT, DAL, PSC, DI, X, Ay, EPSa, EPSr, Xg,u,s(l), Cees Xg,u,s(T)|0g,u,s(1), Cees Og.a,_y(T))

dTR dWIP dGWT dDAI dPSC dDIdX. dAy dEPSa dEPSr =

% il p(og!a,s(l), ey Og,ass(T)HTR, WIP, GWT, DAL, PSC, DI, X, Ay, EPSa, EPSr, Xg,a,s(l), ey Xg,a,s (T)}])
" (18)

Here we obtain the quantities

p(0,0s(1),...,04,,(T){TR, WIP, GWT, DAL, PSC,DI, X, Ay, EPSa, EPSr, X ¢.0.s(1), ..., X g.0s(T)})
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using the samples from the AAMCMC forward projection calibration then use them to forward project the
ODE solver to obtain estimates of Og 4 s(T+1),..., Og 4,s(T +17), conditional on sampled parameters
and states at time 7.

We present the results of this analysis in Figure 9. Here we present the posterior predictive distribu-
tion and predictive 95% posterior CI for the incidence of HPV-6 and HPV-11 combined in the population
after a vaccination. The vaccination scheme, commenced at the time 7 + 10, assumes that 80% of all
15 to 19-year-old women previously not vaccinated (age group 1) receive a single dose of vaccine each
year. The effect of the vaccine is exclusively in reducing the force of infection on a vaccinated individual
by 90% compared with that on an individual belonging to the same age and sexual-activity group who
has not been vaccinated.

The results presented in this section have demonstrated how to incorporate the information that was
obtained from the posterior calibration of the HPV-6 and HPV-11 models to observed data, to predict
the vaccine response post calibration to a given equilibrium in the epidemic model within the popu-
lation. They demonstrate the resultant new equilibrium level for incidence of HPV that would arise
post-vaccination and the time taken to reach a new equilibrium level post-vaccination.

8. Conclusion

In this paper, we developed a novel combination of a compartmental HPV-6 or HPV-11 ODE
transmission model and a Bayesian statistical modelling framework. We investigated the possibility of
calibrating the model to available seropositivity [31] and genital warts incidence [30] data. We then
demonstrated how to perform posterior predictive inference related to impact of vaccination on the
modelled population.

The estimation of the ODE model was achieved via AUMCMC-based sampling methodology based
around adaptive Metropolis coupled with a forward projection ODE solver to perform the joint challenge
of sampling the static model parameters together with the estimated latent ODE states from transience
to equilibrium. This was required in order to perform the evaluation of the rejection stage of the
MCMC algorithm.

In each case, our aim was to ensure that the models developed were both parsimonious, with respect to
the number of parameters utilised to parameterise the ODEs describing the evolution of the disease epi-
demic for HPV-6 and HPV-11, and sufficiently flexible to statistically calibrate the ODE compartmental
model to the observed number of new genital warts diagnoses and seroprevalence per age group.

In addition, we maintain that the introduction of the approach we develop for modelling seropositiv-
ity and its interpretation in the context of the poorly understood implications of seroconversion are in
line with now widespread views relating to HPV epidemic modelling. In particular, we assumed that
only a person who recovered from either an asymptomatic HPV infection or genital warts, and is not
susceptible, can be seropositive.

An attempt to calibrate to the seroprevalence data was of interest because there were no such data
available for Australia until they were presented in [31]. Additionally, we were not aware of any pub-
lished models calibrated to both seroprevalence and genital warts incidence data. Taking into account
that all the data are necessarily prone to various errors, we considered a calibration process successful if
the simulated observation values were found within the reported 95%CI for the real data.

We have demonstrated that a reasonable calibration for the ODE epidemic model under consideration
could be achieved only if some of the model parameters were allowed to take values beyond the ranges
specified for them using currently available literature. We believe that this may be due to one or any
combination of the following reasons: an insufficient level of HPV natural history detail incorporated
in the model; poor quality of the available data; and the uncertainty in interpretation of these data in
the context of compartmental ODE models. Also, we have found that we can observe a notably better
calibration if we modify the assumptions we made about seropositivity in favour of a somewhat contro-
versial notion that the seropositive status should persist regardless of an individual’s disease state and if
we consider relatively short (up to 10 years) durations of immunity for both men and women. However,
in this case the ODE system we had to deal with appeared to be stiff, and the solver we used was signif-
icantly slower to complete solutions. An improvement to the quality of calibration can also be ensured
by the introduction of different durations of immunity for different age groups. One concern with this
extension to the model is the parsimony of the model because the introduction of separate durations
of immunity for all age groups involves the necessity to deal with at least nine new parameters with
non-informative prior distributions (or 18 new parameters if we want to improve the calibration further
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and assume different durations of immunity for men and women). Not only would one question, in such
settings, the ability to accurately estimate such parameters in practice because of the observational data
properties and the amount of observation data, but there would also be important statistical questions
to be addressed relating to over parameterisation of the model, over fitting of the model and parsimony.
Because the intention of this work was to utilise parsimonious and interpretable models, we feel that the
model assumptions introduced were warranted to illustrate the properties of our estimation methodology.
In addition, the extension of this methodology to working with additional parameterisations is trivial and
easily incorporated into our estimation framework. Therefore, we decided, on the basis of the observed
data under analysis, that it was prudent to maintain the parsimonious model representation developed.

On the other hand, we would like to emphasise that our proposed estimation methodology based
around AAMCMC forward projection is automated and easily extended to facilitate any number of addi-
tional model parameters. This is in contrast to other approaches already proposed in the literature that
may suffer from the curse of dimensionality under such parameter extensions. For example, had we
utilised a basic Metropolis—Hastings sampler with a non-adaptive proposal mechanism and not the adap-
tive Metropolis methodology we developed for this solution, then the tuning of the resulting transition
kernel would be affected by such changes and would have to be performed again under each such model
change. This would entail a significant computational burden in performing the model calibration under
each change. In addition, it may result in a serious practical hurdle to overcome in re-design of the
proposal mechanism in the Metropolis—Hasting sampler in order to facilitate efficient mixing in such
high-dimensional sampling frameworks.

We also note that our method is favourable relative to other approaches that are not Markov chain
based solutions. For example, Latin hypercube sampling solutions that calibrate epidemic ODE models
using grids over regions of the parameter space will suffer when the parameter space is significantly
increased; see examples in HIV epidemic models such as [71]. We note that under such approaches, an
increase in the parameter space by an additional m dimensions to represent the new model parameterisa-
tion would require a grid to be placed over an additional m dimensional space; such significant increases
in dimension may cause such approaches to fail because of the super-linear (exponential) increase in
volume associated with adding the extra m dimensions to the parameter space. For each such grid point,
such techniques would then require a complete iteration of the ODE solver to stationarity, incurring sig-
nificant additional computational cost for such model changes, even when sparse grid-based techniques
are used. Often this cost results in little benefit as regions of the parameter space of little significance
to the most likely calibration points must be explored. This is in contrast to our AAMCMC-based pro-
cedure, which focuses computational effort on regions of the parameter space proportional with how
probable, with respect to the posterior support, they are to contribute to suitable calibrations of the ODE
epidemic model.

The AJMCMC forward projection methodology developed is flexible in any dimension and under
any model change, learning on-line the appropriate parameter subspaces to focus computational effort
as dictated by a statistically consistent combination of both prior belief on rates of population move-
ment between states and observed evidence. Therefore, we are able to clearly quantify the probability
weighted distribution of plausible calibration regions in the high-dimensional parameter space using the
samples we obtained from the posterior constructed. This is in contrast to previous literature that tries to
get such information heuristically from procedures such as sensitivity analysis of the ODE structure to
different parameter regions, again incurring significant computational effort. Furthermore, at best such
approaches can only produce what is termed the ‘variability or the prediction imprecision’ in the out-
come variables that is due to the uncertainty in estimating the input values. It is important to note that
such quantifications are not statistically based measures of prediction uncertainty, whereas the predictive
performance we developed under our Bayesian framework can be directly interpreted as the predictive
distribution of the model, again providing advantages of our proposed Bayesian estimation approach in
interpretation of the results.

Appendix A. Sexual mixing matrix

This appendix provides details on the mathematical specification of the sexual mixing matrix and the
parameterisation of the stochastic matrix that we develop. Sexual mixing matrices are widely used in
modelling of sexually transmitted diseases, and their main purpose is to describe how certain char-
acteristics of an individual define his or her sexual activity (i.e. the rate of sexual partner change).
These characteristics typically are the age and/or sexual-activity group an individual belongs to.
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To construct a sexual mixing matrix, we generally need to perform the following:

1. Derive relative sexual partner change rates from sexual behaviour data; these rates have to be
stratified by age groups and sexual-activity groups. Note that in our paper we skipped this step
and reused the rates presented in [16].

2. Specify probabilities of sexual partnerships between individuals from different age groups and
sexual-activity groups on the basis of assumed degrees of assortativity (see subsequent text for
details). The degrees of assortativity are typically estimated from sexual behaviour survey data.
However, these estimations are always very rough and speculative as the surveys are limited in
their ability to quantify personal preferences in the choice of sexual partners by respondents.

3. Adjust the probabilities according to age-specific features of sexual mixing. For example, this can
be an increase in probabilities that young women have much older male partners.

4. To ensure that these adjustments do not cause discrepancies in the rates of partner change between
groups (i.e. to ensure that the adjusted rate at which women from some group change male partners
from another group is the same as the rate at which these men change partners from the men-
tioned group of women), re-scale the original partner change rates. These should form a sexual
mixing matrix.

Notations and available data. From now on, we will denote a gender by g, the gender opposite to g
by g’, a sexual-activity (risk) group by s or s/, and an age group by a or a’. Also, when referring to an
individual of gender g who belongs to a sexual-activity group s and age group a, we will simply say ‘an
individual from g, s, a’ for brevity.

In the equations describing our model, we have a force of infection term for every individual
from g, s,a. This term is effectively a yearly rate at which an individual becomes infected, and it is
defined as

* Iy star
Ag,s,a - :ng {cg,s,s/,a,a’ Sg’,s’,a’ + Ig’,s’,a’ + Gg’,s’,a’ + Pg’,s’,a’ + Ng’,s’,a/ , (A-l)
where f; is the transmission probability per partnership, that is, the probability that a susceptible per-
son of gender g will get infected from his or her infectious partner of gender g’; C;, s.s".a.q’ 1S the mean
per capita rate per year at which an individual from g, s, @ acquires new sexual partners from g’,s’, a’,
and Iy 0/ (Sg's'a’ + Ig' s’ + Ggr ' ar + Pyt osr.ar + Ngv 57 o) is the probability that a new sexual
partner from g, s, a is infected, defined as a proportion of infected individuals in g, s, a.

Now we will start constructing a sexual mixing matrix for our model according to the approach by
Garnett and Anderson [57] and its version used in [14]. In the process of construction, we should use the
relevant data estimated from the results of ASHR. ASHR was a telephone survey of a random sample
of about 20 000 people who were Australian residents aged from 16 to 59 years. Despite its limitations
(see [50] and [16] for discussion), this survey provided important information on the sexual behaviour
of Australians, and its results are currently the most representative ones available. The data we need (as
suggested in [57,72] or [55]) are the following:

e Relative sexual partner acquisition rates r, for each age group a (the same for men and women;
Table VI).

e Relative sexual partner acquisition rates r for each sexual-activity (risk) group s (the same for men
and women; Table A.1).

e Overall sexual partner acquisition rate ¢ for the whole population (both men and women):

¢ =0.437.

All these rates are per capita per year. If for all g, s,a we knew the rates at which an individual from
g. 8, a acquires new sexual partners from the entire pool of individuals of gender g’ (denote them cg 5 4),
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Table A.1. Relative new sexual partner acquisition rates
by sexual-activity group.

Sexual-activity group 1 2 3 4
Population in each group (%) 60 27 11 2
Rate (ry) 1.00 4.76 24.83 105.67
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e e e e
we could find the lowest of these rates,
Cmin: Vg,5,4  Cmin < Cg5,as

and divide by it all ¢4 5 , denoting the results of division by rg s 4:

C
g,5,a
Tgsa=—"". (A.2)
Cmin

These would be the relative sexual partner acquisition rates for g, s, a. We can specify them as follows
Fgsa=TaXTs Vg, a. (A.3)

We can now calculate cpin. Note that ¢ N is the number of partners of gender g’ that all individuals
of gender g acquire per year. This number must be equal to the total number of sexual partners of gender
g’ that individuals of gender g from each age and sex group acquire, so

CNg = § Cg,s,.alNg,s,a = CminTg,1,1Ng,1,1 + Cming,1,2Ng,1,2 + ... = Cmin 2 :’g,s,aNgssaa-
s,a $,a
Hence,
o CNg
Cmin = < . A~
Zs,a rg,s.alNg.s.a

also, with ¢ at hand we can easily calculate all ¢g 5 4 (see (A.2)).

(A.4)

Proportionate and assortative mixing. Now we would like to specify pg s s ,4,4’» Which are the condi-
tional probabilities that an individual of gender g from sexual-activity group s and age group a gets a
sexual partner of the opposite gender g’ from sexual-activity group s’ and age group a’. There are three
possibilities to consider:

1. So-called ‘proportionate’ sexual mixing by age group or sexual-activity group; this means that
Pg.s,s',a,’ May be assumed equal to the proportion of partnerships ‘generated’ by individuals of
gender g’ from age group a’ (and/or sexual-activity group s):

_ D s Cels'a’ Net s ar
Pg.s.s",a,a = Z

(A.5)

s Cg's'a' Ng' s .a’
or

Za, Cg/,s’,a’Ng’,s’,a’

Pg.s,s’a,a” = Z (A.6)

s’ Cgl.s'a’ Ng' " a’

In other words, an underlying assumption here is that more active members of gender g’ have higher
chances to become a new sexual partner to someone of gender g. Note that in case of proportionate
mixing by both age and sexual-activity group, we should simply define pg 5 ¢ 4,4’ and a product of
the right-hand sides of (A.5) and (A.6).

2. ‘Assortative’ mixing (also known as ‘with-like” mixing); again, this can be by age or sexual-activity
group or both, and if it is, for example, by age group, we define

Pg.s.s a0’ = Oaa’- (A7)

That is, the probability of establishing a partnership is 1 if a potential partner is of the same age and
0 otherwise.

3. ‘Disassortative’ mixing (‘with-unlike’) suggests that a partnership can be formed only with
someone from a different age (or sexual-activity) group.

We would like to be able to adjust the sort of mixing in our model depending on our needs. Therefore,
we specify the probabilities pg s s 4,4’ as follows

;7 C ’,s’,a’N ’.s'.a’
Pg.s.s'aa = | (1 — EPSa)844 + EPSa L Ce £
Zs’,a’ Cg's'a' Ng' s a’

(A.8)

’ s /N r o gl
X ((1 — EPSr)dss + EPSr La Cg's'aNg's'a )

Zs/,a/ Ce',s'a’ Net s/
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Parameters EPSa and EPSr help us vary the extent of assortativeness by age and sexual-activity group:
if EPSa = 0, mixing is fully assortative by age group; if EPSa = 1, it is fully proportionate by age group.
In a similar fashion, we can vary EPSr and control assortativeness by sexual-activity group.

Age-related adjustments. Here we introduce some adjustments to emphasise the effect of a steady pop-
ularity of the partnerships between older men and younger women. Let for now g denote men and g’
women. We reduce the probabilities that men in age group 3 and higher have female partners of the
same age:

o fa=d
Pg.s.s’.aa’ —> Pg.s.s'aa (1 —1) if ; a>3 (A9)

Similarly, we reduce the probabilities that women in age groups 1 to 5 form a partnership with men of
the same age:

a/

. a =
Pg’,s,s"a,a’ — Pg’,s,s’,a,a’(l —-I) if % a<5 (A.10)

To compensate for the effect of these adjustments, we increase the probabilities for men to have a female
partner one age group younger but belonging to the age groups not higher than 5,

. a=da +2
Pg.s.5" a0’ = Pg.,s.5"aa’ + UPgs.s".aa if { a <5 (A.11)

and also we increase the probabilities that women have one age group older men from age group 3 or
higher as a partner:

/
o ya=a -2
Pg's.s'aa’ = Pg'.s.s'aa + TPglsstaa 1f % a =3 (A.12)
=

So far, we have used the rates cg 5 , that describe new sexual partner acquisitions by individuals from
g, s, a from the whole population of gender g’. So to find out the rates of acquisition of new sexual part-
ners from a certain age and sexual-activity group (a’ and s’), we should multiply cg 5.4 by pg,s.s".a.a’-
However, now we would like to make the rates cg s , group-specific in terms of the groups that the sexual
partners are selected from. This will be achieved via balancing supply and demand of sexual partners.

Balancing supply and demand. We want the following to hold for all g, s,a and g’, s', a’:

Cg.5,aPg.s.5" a0’ Ng,s.a = Cg’,s'.a' Pg’ ' s.a",aNg' s’ - (A.13)

Here cg 5,4 P¢.5.5,a,a’ 18 the rate of acquisition of new sexual partners by individuals who belong to g, s, a
from g',s’,a’, and cg 5.40g.s,s'.a,a’ Ng.s,a 18 the total number of new partners acquired by g, s,a from
g’,s’,a’. So the equation simply states that the total number of new partners acquired by g, s, a from
g’,s’, a’ must be equal to the total number of new partners acquired by g’, s, a’ from g, s, a.

Let

Cg,s,aPg.s,5"aa’ Ne,s,a 7 Ce' 5" .0/ Pg’ ' 5.0/ ,aNg' 57 a -

We want to find such a multiplier B that

01 _ po>
B ¢q 5,aPg.5,5 a0 Ng,s,.a = B Cor 50’ Pe s 5,07 ,aNg 57 a’ -
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po1—6> — Co',s'a'Pg’ s s,a’,alNg’ s .’

Cg.5,aPg,s.5".a.a’ Ng s,

RIGHTS LI M HA
Copyngnt © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1917-1953



https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fsim.5590&mode=

Statistics
1. A. KOROSTIL ET AL.

To keep things simple, let 6; — 6, = 1. Note that B serves as a degree of imbalance: the balance is
established if B = 1. So, to ensure that (A.13) is true, it is enough to introduce the group-specific rates

* 1 .
Cg.s.s".a,c 10 Deused instead of cg s.q:

*
g.s.8",a,a’

=cgsaB?, = gt BOT (A.14)

¢ g’',s'.5,a ,a

We limit the range of value of parameter 6, to [0, 1]. Suppose the supply and demand are not balanced
and 0; = 0. Then as follows from (A.14), ¢g 5.5’ a,a’ = Cg,s,a (the rates for gender g do not get adjusted),
but cg’ o 5.a'a = cg/,sx,a/B_l (the rates for gender g’ are adjusted). If 6; = 1, it is the other way around.
Consequently, 0 indicates to what extent individuals of each gender adjusts their sexual partner acqui-
sition rates (i.e. we may say, sexual behaviour) in case the available supply of sexual partners does not
meet demand.

At this stage, our sexual mixing matrix is fully formed.

Appendix B. Sensitivity to the presence of sexual activity in individuals under
15 years old

In this appendix, we illustrate our findings regarding the sensitivity of our model calibration to possible
sexual activity in individuals younger than 15 years old. We introduced an additional age group into our
model, which includes 10-14 years old. It is unreasonable to assume that the population in this age group
is completely sexually active, so we do not expect the relative new sexual partner change rate (PCR) in
the group to be close to the yearly rate of 5.2755 assigned to the 15-19 year age group.

Here we present the calibration plots corresponding to the PCR in group 1 equal to 1, 2 and 3
(Figures B.1-B.3 correspondingly), where 1 is the base PCR (Table VI).

seroprevalence in males seroprevalence in females
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Figure B.1. Calibration plot with an additional 10-14 year-old age group (group 1); relative sexual activity in
this group is 1.
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Figure B.2. Calibration plot with an additional 10-14 year-old age group (group 1); relative sexual activity in

this group is 2.
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Figure B.3. Calibration plot with an additional 10-14 year-old age group (group 1); relative sexual activity in
this group is 3.
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We observe that the higher the PCR in group 1, the higher are both incidence and seroprevalence in
this group. Also, the higher is the proportion of individuals from age group 2 (15-19 years old) who
form partnerships with individuals from age group 1 instead of individuals from age group 3 (which
is considerably more active than age group 1). Indeed, we should recall that the overall PRCs are pre-
specified for each age group other than 1, so any partnerships with the new age group 1 are established
only at the price of reduced number of relationships with age group 3. Therefore, we see a decline in
incidence in age group 2. Similarly, there is a decline in incidence in age group 3, members of which
now form more partnerships with age group 5, less active than age group 2. This effect spreads to the rest
of the groups, although it becomes very weak in the groups with low PCRs. Overall, the corresponding
changes in seroprevalence are hardly noticeable.

Therefore, we conclude that, allowing for some nonzero level of sexual activity in the under-15 pop-
ulation, we would see the age-specific genital warts incidence reduced, particularly in the most sexually
active age groups.

Appendix C. Sensitivity to the durations of natural immunity

This appendix studies the sensitivity to the assumption that the durations of natural immunity for men
and women are life-long. We demonstrate that a reasonable choice was made for this assumption with
regard to behaviour of the model.

To assess the effect of varying durations of immunity on calibration, we performed simulations for the
durations of immunity ranging from 10 to 45 years. For the particular prior distributions on the durations,
we first assumed that they are 10-15 years, then 15-20 years, and so on.

It is clear from Figures C.1-C.3 that as immunity lasts longer, individuals remain in state RSP (the
only state containing seropositive individuals) longer; hence, we observe higher seroprevalence. At the
same time, these individuals contribute less to the infected state, so we see that genital warts incidence
decreases.

Note that if the durations of immunity are very long, let us say 40—45 years (Figure C.3), the level
of seropositivity produced by the model is closer to the real-life reported level than under any other
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Figure C.1. Calibration plot if the durations of natural immunity for both men and women are 10-15 years.
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Figure C.2. Calibration plot if the durations of natural immunity for both men and women are 20-25 years.
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Figure C.3. Calibration plot if the durations of natural immunity for both men and women are 40—45 years.

assumed durations of immunity (Figures C.1 and C.2). Also, genital warts incidence is clearly closer to

the reported values.

Therefore, our model favours long durations of immunity, and we simply set them to as long as

possible to reduce the number of parameters in the model.
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Appendix D. Sensitivity to demographic changes

This appendix studies the sensitivity to the simplified population structure utilised in our model. In par-
ticular, we made it more realistic by incorporating the birth and death data for Australia published by
Australian Bureau of Statistics (http://www.abs.gov.au). We assumed that age-specific death rates for
men and women are constant and equal to the reported rates for 2010. This is acceptable because they
did not change significantly between 2005 and 2010 (Table D.1). We also assumed a constant birth rate
at 12 births per population of 1000. There was no apparent need to analyse the case when the number of
men in the population is significantly different from the number of women because the official data say
that the difference is not notable.

As we can see from Figures D.1 and D.2, the effect of the added complexity of population structure
is clearly minor and mainly visible in the youngest age group. Considering that the observational data
we deal with are particularly ambiguous for age group 1, we felt that the simplified population structure
would be appropriate.

Table D.1. Australian death rates for 2005-2010, per 1000 individuals.

Age group Male population Female population

(years) 2005 2006 2007 2008 2009 2010 2005 2006 2007 2008 2009 2010
15-19 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.3 02 02 0.2 0.2
20-24 0.8 0.8 0.7 0.7 0.6 0.6 0.3 0.3 0.3 0.3 0.3 0.3
25-29 0.9 0.8 0.9 0.8 0.8 0.7 0.3 0.3 0.3 0.3 0.3 0.3
30-34 1.1 1.0 1.0 1.0 1.0 0.9 04 04 05 0.4 04 04
35-39 1.2 1.2 1.2 1.2 1.2 1.2 0.6 06 06 06 0.6 0.6
40-44 1.7 1.6 1.5 1.6 1.7 1.6 1.0 0.9 1.0 0.9 0.9 0.9
45-49 24 24 24 2.4 2.3 24 14 1.5 1.4 1.4 1.5 1.4
50-54 35 34 3.5 3.6 35 34 2.1 2.1 22 2.1 22 2.1
55-59 54 53 5.4 5.2 5.2 5.2 32 3.2 3.2 3.2 3.2 3.1

Taken from the data published on-line by Australian Bureau of Statistics, www.abs.gov.au.
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Figure D.1. Calibration plot corresponding to the simplified population structure implemented in our model.
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Figure D.2. Calibration plot corresponding to the case when the simplified population structure implemented in

our model is extended via incorporation of age-specific Australian death rates based on the figures reported by

the Australian Bureau of Statistics for 2005-2010 and national birth rate estimated for the same period. Data
detailed in Table D.1.

Appendix E. Prior distributions

In this appendix, the prior specifications are developed for Case 1 (that is, on the basis of the data
available in the literature; Table II).

Transmission term (TR)

This parameter is often understood as the probability of transmission of HPV infection per sexual part-
nership of a susceptible man with an infected woman or vice versa. There is currently no conclusive
evidence to narrow down the range of possible values of this parameter to anything noticeably different
from [0, 1]. Therefore, we chose uniform prior distributions for both TRm and TRf: TRm ~ U(0, 1),
TRf ~ U(0, 1).

Genital warts incubation period (WIP)

We chose a gamma distribution to be used as prior on this parameter, that is, for men we have
WIPm ~ T'(dm, Bm) and for women WIPf ~ T'(ar,Br). As the most frequent incubation period
observed during the studies we use the data from was not within the first month, we set the shape param-
eters a,, and « s in such a fashion that the mode of the prior is not the origin, simply by o, = o p = 2.
The remaining scale parameter is then utilised to adjust the prior to the study results reporting median
durations of incubation period as detailed next.

To specify the prior distribution for the genital warts incubation period for men (WIPm), we used
the results of a cohort study of 18-21 year-old male students attending the University of Washington
[66]. Eighteen out of 418 men had incident HPV-6 infection and developed warts during the duration
of the study (the mean follow-up time was 24.6 months). Among these men, the median time between
incident infection and detection of genital warts was reported to be 11 months (IQR: 0-16.1 months).
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We re-calculate these durations in years by dividing them by 12 months, which produced a median of
0.916 (IQR: 0-1.341) years.

The quantile function CDF ™! (also known as inverse cumulative distribution function) of the gamma
distribution has no closed form. However, according to the method of medians, we can find §,, solving
numerically the following equation: 0.916 = CDF~1(0.5; at, = 2, Bm). This gives us B, = 0.546.

The duration of genital warts incubation period in women (WIPf) was provided by a study of
18-20 year-old female students of University of Washington [67]. Twenty-eight out of 41 women
with incident HPV-6 infection (no HPV-11 infection) developed warts. The median incubation period
was 2.9 months (IQR: 0-5.7 months). In years, this is 0.241 (IQR: 0-0.475) years. As in the
preceding, according to the method of medians, this would involve solving numerically the equation
0.241 = CDF_I(O.S; ar =2,pBy) for B,,. Hence, we obtain By = 0.144.

Duration of treatment for genital warts (DWT)

To specify a prior distribution for this parameter, we used the data from a study [68] based on analysis of
private insurance claims associated with genital warts in the USA (total 3 664 686 claims sampled, 5095
cases of genital warts identified). The mean ‘duration of episode’ for men was reported to be 102.6 days
(95%CI: 77.8-127.4), with 237 men considered, or in years (if we divide these numbers by 365 days)
this is 0.281 (95%CI: 0.213-0.349).

We assume that DWT for men, DWTm ~ T'(k,,, 6,,). To specity the shape parameter k,, and scale
parameter 6,,, we again note that the mode of the distribution would not be located at the origin, and so
we set the shape parameter k,, = 2 and solve for the scale parameters by matching 6,,, = 0.14.

The same study [68] reports the mean duration of treatment for women 84.8 days (95%CI:
67.5-102.1), with 299 women considered. In years, the mean is 0.232 (95%CI: 0.185-0.28). We again
assume that DWTf ~ I'(k , 0 r) and perform the same procedure to get k = 2 and 6y = 0.12.

Duration of asymptomatic human papillomavirus infection (DAI)

We assign a Gamma distribution to this parameter: DAIm ~ I'(a,, byy) and DAIf ~ T'(ar,br). As for
the previous parameter, we set the shape parameters a,, and a s in such a fashion that the mode of the
prior is not the origin, simply by a,, = a y = 2. The remaining scale parameter is then utilised to adjust
the prior to previous study results reporting the median as detailed next, where we apply the method
of medians.

A study of the natural history of HPV infections among men aged 18—44 years was conducted in
Tucson, Arizona [49]. In total, 290 men were under observation. The findings showed that the median
value of DAI for men (DAIm) for HPV-6 or HPV-11 was equal to 5.4 months (95%CI: 5.1-5.7 months).
In years, this is 0.45 (95%CI: 0.425-0.475).

In the same manner as described for WIP, we specify b,, = 0.268 as the solution to 0.45 =
CDF1(0.5;apm =2,by).

To specify DAI for women (DAIf), we used the results of a study conducted in Sdo Paulo, Brazil [51].
The recruited 2462 women, 18—60 years old, who attended a maternal and child health programme in a
low-income neighbourhood between 1993 and 1997 were followed for up to 10 years. It was found that
the median duration of asymptomatic HPV-6 or HPV-11 infection was 6.0 months (95%CI: 5.7-6.9),
which in years is 0.5 (95%CI: 0.425-0.575). The mean duration was 9.5 months (95%CI: 6.9-12.1) or
0.7916 (95%CI: 0.575-1.0) years. Similarly to the way we calculated b, b y = 0.472 is obtained as the
solution to 0.7916 = CDF ' (0.5;a s = 2,b ).

Duration of natural immunity (DI)

Almost nothing is known about duration of natural immunity. We investigated a wide range of pos-
sible values for this parameter assuming that it is distributed uniformly (see the sensitivity analysis
in Appendix C).

Probability of becoming seropositive (PSC)

We decided to assign a prior distribution Beta(2,2) to this parameter as it denotes a probability.

RIGHTS LI M K
Copyngnt © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1917-1953

5U60 17 SUOLLILIOD BAER.D 3|eat ke U AQ PaULRAOB 31 SBDILE YO 98N J0 S [N JOJ AIRIq 1T BUIIUO AB]IA O (SUONIPUGO-PL-SLLLIBYLIOD" A3 I ARGl PUIUO//SchiL) SUOTIPUOD PUE SWL | aU) 95 *[120Z/0T/22] U0 ARei 1 aUIlUO 31 N0’ [on@ equLeLLI-<UR[0gaIS> AQ 06GS WIS/Z00T ‘0T/10p/L00"Aa| W AReiq eu! |uo//Sdiy woJ papeojumoq T ‘ETOZ ‘85Z0260T


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fsim.5590&mode=

Statistics

1. A. KOROSTIL ET AL.
I

Acknowledgements

We thank Dr David Philp for discussions and early work that motivated the work conducted for this paper.
Mr Greg Londish is also thanked for work conducted in the early stages of this project. Funding for this project
and support for I. K. were provided by an Australian Research Council Linkage Project grant (LP0883831). D. R.
is supported by a National Health and Medical Research Council Program Grant (568971). The Kirby Institute
is funded by the Australian Government Department of Health and Ageing and is affiliated with the Faculty of
Medicine, University of New South Wales. J. C. is supported by BBSRC grant BB/G006997/1.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Munoz N, Castellsague X, de Gonzalez AB, Gissmann L. HPV in the etiology of human cancer. Vaccine 2006; 24
(Suppl 3):S1-S10.

Trottier H, Burchell AN. Epidemiology of mucosal human papillomavirus infection and associated diseases. Public Health
Genomics 2009; 12(5-6):291-307.

. Burchell AN, Winer RL, de Sanjose S, Franco EL. Epidemiology and transmission dynamics of genital HPV infection.

Vaccine 2006; 24(Suppl 3):S52-S61.

. Lacey CJ, Lowndes CM, Shah KV. Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease.

Vaccine 2006; 24(Suppl 3):S35-S41.

. Pomfret TC, Gagnon JM, Jr, Gilchrist AT. Quadrivalent human papillomavirus (hpv) vaccine: a review of safety, efficacy,

and pharmacoeconomics. Journal of Clinical Pharmacy and Therapeutics 2011; 36(1):1-9.

. Stanley M. Prophylactic human papillomavirus vaccines: will they do their job? Journal of Internal Medicine 2010;

267(3):251-259.

. Garland SM, Brotherton JM, Fairley CK, Gertig DM, Saville M. Advancements in the control of genital human

papillomavirus infections and related diseases: highlighting Australia’s role. Sexual Health 2010; 7(3):227-229.

. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press: Oxford, 1992.
. Garnett GP. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. Journal of

Infectious Diseases 2005; 191(Suppl 1):S97-S106.

Brisson M, Edmunds W1J. Economic evaluation of vaccination programs: the impact of herd-immunity. Medical Decision
Making 2003; 23(1):76-82.

Edmunds WJ, Medley GF, Nokes DJ. Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective.
Statistics in Medicine 1999; 18(23):3263-3282.

Barnabas RV, Laukkanen P, Koskela P, Kontula O, Lehtinen M, Garnett GP. Epidemiology of HPV 16 and cervical cancer
in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Medicine 2006; 3:624-632.
Choi YH, Jit M, Gay N, Cox A, Garnett GP, Edmunds WJ. Transmission dynamic modelling of the impact of human
papillomavirus vaccination in the United Kingdom. Vaccine 2010; 28(24):4091-4102.

Elbasha EH, Dasbach EJ, Insinga RP. A multi-type HPV transmission model. Bulletin of Mathematical Biology 2008;
70:2126-2176.

Hughes JP, Garnett GP, Koutsky L. The theoretical population-level impact of a prophylactic human papilloma virus
vaccine. Epidemiology 2002; 13(6):631-639.

Regan DG, Philp DJ, Hocking JS, Law MG. Modelling the population-level impact of vaccination on the transmission of
human papillomavirus type 16 in Australia. Sexual Health 2007; 4:147-163.

Beutels P, Jit M. A brief history of economic evaluation for human papillomavirus vaccination policy. Sexual Health 2010;
7(3):352-358.

Jit M, Choi YH, Edmunds WJ. Economic evaluation of human papillomavirus vaccination in the United Kingdom. BMJ
2008; 337:a769. DOI: 10.1136/bmj.a769.

Kim JJ, Goldie SJ. Health and economic implications of HPV vaccination in the United States. New England Journal of
Medicine 2008; 359(8):821-832.

Kulasingam S, Connelly L, Conway E, Hocking JS, Myers E, Regan DG, Roder D, Ross J, Wain G. A cost-effectiveness
analysis of adding a human papillomavirus vaccine to the Australian national cervical screening program. Sexual Health
2007; 4:165-175.

Marra F, Cloutier K, Oteng B, Marra C, Ogilvie G. Effectiveness and cost effectiveness of human papillomavirus vaccine:
a systematic review. Pharmacoeconomics 2009; 27(2):127-147.

Sanders GD, Taira AV. Cost effectiveness of a potential vaccine for human papillomavirus. Emerging Infectious Diseases
2003; 9(1):37-48.

Keeling M, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University Press: Princeton, NJ,
2007.

Vynnycky E, White RG. An Introduction to Infectious Disease Modelling. Princeton University Press: Princeton, NJ,
2010.

Burchell AN, Richardson H, Mahmud SM, Trottier H, Tellier PP, Hanley J, Coutlee F, Franco EL. Modeling the sexual
transmissibility of human papillomavirus infection using stochastic computer simulation and empirical data from a cohort
study of young women in Montreal, Canada. American Journal of Epidemiology 2006; 163(6):534—543.

Van de Velde N, Brisson M, Boily MC. Modeling human papillomavirus vaccine effectiveness: quantifying the impact of
parameter uncertainty. American Journal of Epidemiology 2007; 165(7):762-775.

Kjer SK, Trung Nam T, Sparen P, Tryggvadottir L, Munk C, Dasbach E, Liaw KL, Nygérd J, Nygard M. The burden of
genital warts: a study of nearly 70,000 women from the general female population in the 4 Nordic countries. Journal of
Infectious Diseases 2007; 196(10):1447-1454. DOI: 10.1086/522863. URL http://dx.doi.org/10.1086/522863.

RIGHTS LI M HA
Copyngnt © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1917-1953

8
3
]
k-4
8
&
B
o
2
=5
o
=
8
3
3
Z
B
E)
z
[}
g
2
<
E
2
8
E
8
1S
2
8
)
@
3
(61
g
g
N
2
o
g
o
2
v
3
El
g
®
&
B
5
S
2
o
=1
Z
3
=
g
S
5
5
=
z
=
X
2
2
(=3
15
=
H
2
2
il
g
)
[}
g
2
B
2
8
2
2}
3
@
2
z
8
=
S
3
S
S
2
o
=5
Z
3
=
g
g
z
]
Qo
c
8
3
£
5
]
2
@
Q
2
2
3
8
g



https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fsim.5590&mode=

Statistics

28.

29.
30.

31.

32.
33.
34.
35.
36.
37.
38.
. Chib S, Greenberg E. Understanding the Metropolis—Hastings algorithm. American Statistician 1995; 49(4):327-335.

40.

41.
42.

43.
44,

45.
46.
47.
48.
49.
50.

51

52.

53.

54.
55.
56.

57.

58.

59.

1. A. KOROSTIL ET AL.

Grulich AE, de Visser RO, Smith AMA, Rissel CE, Richters J. Sex in Australia: knowledge about sexually transmissible
infections and blood-borne viruses in a representative sample of adults. Australian and New Zealand Journal of Public
Health 2003; 27(2):230-233.

Maw RD, Reitano M, Roy M. An international survey of patients with genital warts: perceptions regarding treatment and
impact on lifestyle. International Journal of STD & AIDS 1998; 9(10):571-578.

Pirotta M, Stein AN, Conway EL, Harrison C, Britt H, Garland S. Genital warts incidence and health care resource
utilisation in Australia. Sexually Transmitted Infections 2009; 86:181-186.

Newall AT, Brotherton JML, Quinn HE, McIntyre PB, Backhouse J, Gilbert L, Esser MT, Erick J, Bryan J, Formica N,
Maclntyre CR. Population seroprevalence of human papillomavirus types 6, 11, 16, and 18 in men, women, and children
in Australia. Clinical Infectious Diseases 2008; 46:1647-1655.

Regan DG, Philp DJ, Waters EK. Unresolved questions concerning human papillomavirus infection and transmission: a
modelling perspective. Sexual Health 2010; 7:368-375.

Veldhuijzen NJ, Snijders PJ, Reiss P, Meijer CJ, van de Wijgert JH. Factors affecting transmission of mucosal human
papillomavirus. Lancet Infectious Diseases 2010; 10(12):862-874.

Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of modeling. Statistical Science 2000;
15(4):377-395.

Hoare A, Regan DG, Wilson DP. Sampling and sensitivity analyses tools (SaSAT) for computational modelling.
Theoretical Biology and Medical Modelling 2008; 5:1-18.

Gilks W, Richardson S, Spiegelhalter D. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC: Boca Raton,
FL, 1996.

Brooks S. Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society: Series D
(The Statistician) 1998; 47(1):69—100.

Andrieu C, Thoms J. A tutorial on adaptive MCMC. Statistics and Computing 2008; 18(4):343-373.

Roberts G, Rosenthal J. Optimal scaling for various Metropolis—Hastings algorithms. Statistical Science 2001;
16(4):351-367.

Atchadé Y, Rosenthal J. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 2005; 11(5):815-828.

Andrieu C, Atchade YF. On the efficiency of adaptive MCMC algorithms. Proceedings of the 1st International Conference
on Performance Evaluation Methodolgies and Tools, ACM New York, NY, 2006; 43.

Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm. Bernoulli 2001; 7:223-242.

Roberts GO, Rosenthal JS. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 2009;
18:349-367.

Trottier H, Philippe P. Deterministic modeling of infectious diseases: theory and methods. The Internet Journal of
Infectious Diseases 2001; 1(2):3.

Trottier H, Philippe P. Deterministic modeling of infectious diseases: applications to measles and other similar infections.
The Internet Journal of Infectious Diseases 2002; 2(1). DOI: 10.5580/89b.

Bartlett M. Measles periodicity and community size. Journal of the Royal Statistical Society. Series A (General) 1957;
120(1):48-70.

Brauer F, Castillo-Chavez C. Mathematical models in population biology and epidemiology, 2001.

Giuliano AR, Lu B, Nielson CM, Flores R, Papenfuss MR, Lee JH, Abrahamsen M, Harris RB. Age-specific prevalence,
incidence, and duration of human papillomavirus infections in a cohort of 290 US men. The Journal of Infectious Diseases
2008; 198:827-835.

Smith AMA, Rissel CE, Richters J, Grulich AE, de Visser RO. Sex in Australia: the rationale and methods of the
Australian study of health and relationships. Australian and New Zealand Journal of Public Health 2003; 27:106-117.
DOI: 10.1111/5.1467-842X.2003.tb00797 .x.

Trottier H, Mahmud S, Carlos M Prado J, Sobrinho JS, Costa MC, Rohan TE, Villa LL, Franco EL. Type-specific dura-
tion of human papillomavirus infection: implications for human papillomavirus screening and vaccination. The Journal of
Infectious Diseases 2008; 197:1436—1447.

Rissel CE, Richters J, Grulich AE, de Visser RO, Smith AMA. Sex in Australia: selected characteristics of regular sexual
relationships. Australian and New Zealand Journal of Public Health 2003; 27(2):124-130.

Boyle FM, Dunne MP, Purdie DM, Najman JM, Cook MD. Early patterns of sexual activity: age cohort differences
in Australia. International Journal of STD & AIDS 2003; 14(11):745-752. DOI: 10.1258/09564620360719787. URL
http://dx.doi.org/10.1258/09564620360719787.

Pitts MK, Couch MA, Smith AMA. Men who have sex with men (MSM): how much to assume and what to ask? Medical
Journal of Australia 2006; 185(8):450-452.

Garnett GP, Anderson RM. Balancing sexual partnerships in an age and activity stratified model of HIV transmission in
heterosexual populations. IMA Journal of Mathematics Applied in Medicine & Biology 1994; 11:161-192.

Ghani AC, Swinton J, Garnett GP. The role of sexual partnership networks in the epidemiology of gonorrhea. Sexually
Transmitted Diseases 1997, 24(1):45-56.

Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries:
patterns of mixing between different age and sexual activity classes. Philosophical Transactions of the Royal Society B:
Biological Sciences 1993; 342:137-159.

Garnett GP, Anderson RM. Sexually transmitted diseases and sexual behavior: insights from mathematical models.
Journal of Infectious Diseases 1996; 174:S150-S161.

Garnett GP, Hughes JP, Anderson RM, Stoner BP, Aral SO, Whittington WL, Handsfield HH, Holmes KK. Sexual
mixing patterns of patients attending sexually transmitted diseases clinics. Sexually Transmitted Diseases 1996; 23(3):
248-257.

RIGHTS L | M KA

Copyngnt © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1917-1953

5U60 17 SUOLLILIOD BAER.D 3|eat ke U AQ PaULRAOB 31 SBDILE YO 98N J0 S [N JOJ AIRIq 1T BUIIUO AB]IA O (SUONIPUGO-PL-SLLLIBYLIOD" A3 I ARGl PUIUO//SchiL) SUOTIPUOD PUE SWL | aU) 95 *[120Z/0T/22] U0 ARei 1 aUIlUO 31 N0’ [on@ equLeLLI-<UR[0gaIS> AQ 06GS WIS/Z00T ‘0T/10p/L00"Aa| W AReiq eu! |uo//Sdiy woJ papeojumoq T ‘ETOZ ‘85Z0260T


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fsim.5590&mode=

Statistics

I. A. KOROSTIL ET AL.
I

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

Ghani A, Garnett G. Measuring sexual partner networks for transmission of sexually transmitted diseases. Journal of the
Royal Statistical Society: Series A (Statistics in Society) 1998; 161:227-238. DOI: 10.1111/1467-985X.00101.

Kim J, Andres-Beck B, Goldie S. The value of including boys in an HPV vaccination programme: a cost-effectiveness
analysis in a low-resource setting. British Journal of Cancer 2007; 97:1322-1328.

Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerging
Infectious Diseases 2007; 13(1):28-41.

Ditlevsen S, De Gaetano A. Mixed effects in stochastic differential equation models. REVSTAT-Statistical Journal 2005;
3(2):137-153.

Ditlevsen S, De Gaetano A. Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers. Bulletin of
Mathematical Biology 2005; 67(3):547-561.

Hairer E, Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second
Revised, Springer Series in Computational Mathematics, Vol. 14. Springer, 1996.

Arima Y, Winer RL, Feng Q, Hughes JP, Lee SK, Stern ME, OReilly SF, Koutsky LA. Development of genital warts
after incident detection of human papillomavirus infection in young men. The Journal of Infectious Diseases 2010;
202:1181-1184.

Winer RL, Kiviat NB, Hughes JP, Adam DE, Lee SK, Kuypers JM, Koutsky LA. Development and duration of human
papillomavirus lesions, after initial infection. The Journal of Infectious Diseases 2005; 191:731-738.

Insinga RP, Dasbach EJ, Myers ER. The health and economic burden of genital warts in a set of private health plans in
the United States. Clinical Infectious Diseases 2003; 36:1397-1403.

Roberts GO, Rosenthal GS. Optimal scaling for various Metropolis—Hastings algorithms. Statistical Science 2001;
16(4):351-367.

Atchadé Y, Fort G, Moulines E, Priouret P. Adaptive Markov chain Monte Carlo: theory and methods, 2009.

Blower S, Dowlatabadi H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model,
as an example. International Statistical Review/Revue Internationale de Statistique 1994; 62(2):229-243.

Garnett GP, Anderson RM. Contact tracing and the estimation of sexual mixing patterns: the epidemiology of gonococcal
infections. Sexually Transmitted Diseases 1993; 4:181-191.

RIGHTS LI M HA
Copyngnt © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1917-1953

8
3
]
k-4
8
&
B
o
2
=5
o
=
8
3
3
Z
B
El
z
[}
g
2
<
E
2
8
E
8
1S
2
8
)
@
3
(61
g
g
N
2
o
g
o
2
v
3
El
g
®
&
B
5
S
2
o
=1
Z
3
=
g
S
5
5
=
z
=
2
2
2
(=3
15
=
H
2
2
il
g
)
[}
g
2
B
2
8
2
2}
3
@
2
z
8
=
S
3
S
S
2
o
=5
Z
3
=
g
g
z
]
Qo
c
8
3
£
5
]
2
@
Q
2
2
3
8
g



https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fsim.5590&mode=

