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ABSTRACT

In this paper, we address the problem of tracking an unknown and

time varying number of targets and their states from noisy observa-

tions available at discrete intervals of time. Attention has recently fo-

cused on the role of simulation-based approaches, including Monte

Carlo methods, in solving multitarget tracking problem, as these

methods are able to perform well for nonlinear and non-Gaussian

data models. In this paper, we present a comparative study of several

Monte-Carlo methods in terms of estimation quality and complexity.

Index Terms— Tracking, Monte-Carlo methods, Particle filter,

MCMC

1. INTRODUCTION

A major challenge in statistical signal processing has historically

been the tracking of moving targets, let them be aircrafts, sub-

marines, robots, or even, in less military areas, cells in a blood

sample observed by microscope and fluorescence imaging, football

players on a video, or even cellphones. The purpose of multiple

target tracking algorithms is to detect, track and identify targets

from sequences of noisy observations of the targets provided by one

or more sensors.

Many approaches have been proposed to tackle the problem of

multitarget detection and tracking. These range from the Kalman

filter and its non-linear extensions to JPDAF trackers [1] and the

Probability Hypothesis Density (PHD) filter [2]. The latter has been

proposed to estimate the targets’ characteristics as well as the num-

ber of targets by modeling them as a random set. However its per-

formance degrades significantly in hostile environment - high clut-

ter density and low target detection probability, and target identity

is not preserved [3]. With the simultaneous advances in modern

computational power and the developments in optimal inference for

strongly non-linear models such as particle filters [4] and Markov

Chain Monte Carlo (MCMC) [5], it is now possible to solve com-

plex state space models efficiently, potentially achieving significant

performance gains.

In this paper, we will compare the performances of several

Monte-Carlo methods on the challenging case of tracking an un-

known number of independent targets in a hostile environment of

heavy level of false alarm (clutter) and very low probability of de-

tection. We evaluate the efficiency as well as the complexity of the

sequential importance resampling (SIR) algorithm [4], the resample-

move [6] as well as the MCMC-based particle method [7]. Since

number of objects to estimate is unknown, the optimal sub-pattern

assignment (OSPA), recently proposed in [8] to evaluate the esti-

mation quality of multitarget tracking algorithms, will be used as

comparison metric.

The paper is organized as follows. In Section 2, we present the

multitarget tracking by formulating the likelihood function for the

observations as well as the necessary prior functions for the states

of interest in order to construct the posterior distribution function.

In Section 4, performances of the Monte-Carlo approaches are as-

sessed through numerical simulations with different environmental

conditions. Finally, conclusions are given in Section 5.

2. PROBLEM FORMULATION

In this study, we consider a time-varying number of targets. As a

consequence, the target states are variable dimension quantities since

targets can appear or disappear from the scene randomly over time.

In order to model this birth and death process, we choose to use a set

of existence variables ek with elements ek,i ∈ {0, 1} model the birth

and death process for each individual target. In this formulation,

the targets’ kinematic vector is thus regarded as fixed dimensional

quantity with Nmax targets, each of which being active or inactive

according to its existence variable ek,i.
In this application, the aim is thus to compute, at time tk ,

the filtering posterior distribution p(xk, ek|z0:k) where xk =
[xk,1 · · · xk,Nmax yk,1 · · · yk,Nmax ẋk,1 · · · ẋk,Nmax ẏk,1 · · ·
ẏk,Nmax ]

T , ek = [ek,1 · · · ek,Nmax ]
T and z0:k are respectively the

targets’ kinematics vector, the existence vector and the observation

set from time t0 to tk .

In this work, we consider that the targets evolve independently

of one another and the existence variable and the targets’ kinemat-

ics are independent, so the transition probability distribution can be

expanded as follows

p(xk, ek|xk−1, ek−1) = p(xk|xk−1, ek, ek−1)p(ek|ek−1)

=
∏Nmax

n=1 p(xk,n|xk−1,n, ek,n, ek−1,n)p(ek,n|ek−1,n) (1)

We now describe the various densities involved in the computa-

tion of the filtering posterior distribution.

2.1. The prior distribution of the existence variables

Each target’s existence variable will be modeled as a discrete

Markov chain [9] which is independent of all other states. In

this paper, the birth process is modeled as a Bernoulli like the death

process:

p(ek,n|ek−1,n) = δ(ek,n − 1) [(1− PD)δ(ek−1,n − 1)

+PBδ(ek−1,n)] + δ(ek,n) [(1− PB)δ(ek−1,n)

+PDδ(ek−1,n − 1)] (2)

where PB and PD are probability values for a target to become re-

spectively active (“alive”) or inactive (“dead”).

2011 IEEE Statistical Signal Processing Workshop (SSP)

978-1-4577-0570-0/11/$26.00 ©2011 IEEE 205Authorized licensed use limited to: University College London. Downloaded on October 27,2024 at 20:41:08 UTC from IEEE Xplore.  Restrictions apply. 



2.2. The transition probability of the targets

The transition probability of the nth target can be partitioned accord-

ing to ek,n and ek−1,n as follows:

p(xk,n|xk−1,n, ek−1:k,n)

=






pb(xk,n) if {ek,n, ek−1,n} = {1, 0}
pd(xk,n) if ek,n = 0
pu(xk,n|xk−1,n) if {ek,n, ek−1,n} = {1, 1}

(3)

Target Birth - The target can appear anywhere uniformly in the

surveillance area of Lx by Ly . The speed is also uniformly dis-

tributed between −Vmax and Vmax, i.e.

Target Death - For an inactive target, i.e. ek,i = 0 , we will

keep the target state at some xdeath, which is the state where an

inactive target is represented, i.e. pd(xk,n) = δ(xdeath)
Target Update - This case corresponds to active targets that will

be updated according to the near constant velocity model

pu(xk,n|xk−1,n) = N (xk,n|Ak,nxk−1,n,Qk,n) (4)

where the matrices Ak,n and Qk,n are defined as follows:

Ak,n =

[
I2 τkI2
02 I2

]
,Qk,n = σ2

x,n

[
(τ3

k/3)I2 (τ2
k/2)I2

(τ2
k/2)I2 τkI2

]
(5)

with τk = tk − tk−1.

2.3. Association Free Observation Model

An association free observation is considered in this study. At

each time step tk , a set or frame of sensor measurements zk ={
z1k, ..., z

Mk

k

}
is received from a sensor scanning within an ob-

servation space, where Mk is the number of measurements (both

target and clutter) returned by the sensor. Since any element of zk
may originate from a true target or from clutter, a Poisson process is

adopted to model the observations falling in a specific region. The

number of the nth active target measurements is randomly generated

from a Poisson distribution having mean Λn
x whereas the number of

clutter measurements have a mean number ΛC [10]. Accordingly,

the likelihood function of the observations can be expressed as

p(zk|xk, ek) =
e−µk

Mk!

Mk∏

m=1

λ(zmk |xk, ek) (6)

where µk = ΛC +
∑

n∈I
Λn

x is the expected total number of mea-

surements received at time tk and

λ(zmk |xk, ek) =
∑

n∈I

Λn
xpx(z

m
k |xk,n) + ΛCpC(z

m
k ) (7)

with px(.) and pC(.) being the likelihood functions of target and

clutter measurements and I the index set corresponding to the index

of active targets (e.g. ek,n = 1) at time tk . For the measurements

issuing from the nth target, zmk = [zmk,x, z
m
k,y]

T is considered to be

drawn from px(z
m
k |xk,n) = N (zmk |xk,n,Σx). The clutter mea-

surements are drawn uniformly in the surveillance region.

3. MONTE-CARLO METHODS FOR TRACKING

In Bayesian framework, we are aimed at computing the posterior

distribution p(s0:k|z0:k), with sk = [xk, ek], recursively by

p(s0:k|z0:k) ∝ p(zk|sk)p(sk|sk−1)p(s0:k−1|z0:k−1) (8)

Unfortunately in multitarget tracking, like in many other applica-

tions, this distribution is analytically intractable. We therefore turn

to Monte-Carlo methods to provide an efficient numerical approxi-

mation strategy for recursive estimation of the state of interest.

In this work, we focus our study on three Monte-Carlo methods

used for Bayesian filtering: the sequential importance resampling

(SIR) algorithm [4], the resample-move [6] as well as the MCMC-

based particle method [7]. In all these approaches, the posterior dis-

tribution is approximated, at each time, by a set of Np unweighted

particles, i.e. at time tk−1 :

p̂(s0:k−1|z0:k−1) =
1

Np

Np∑

j=1

δ(s0:k−1 − s
(j)
0:k−1) (9)

The difference between these methods relies on the sampling strat-

egy of {s(j)0:k}
Np

j=1 from the posterior p(s0:k|z0:k) by using the pre-

vious samples {s(j)0:k−1}
Np

j=1. Let us now describe these algorithms

applied to multitarget tracking.

3.1. Sequential Importance Resampling

The SIR was proposed in [4] under the name of “bootstrap filter”.

This algorithm is derived from the Sequential Importance Sampling

(SIS) algorithm by choosing the importance density to be the prior

one, Eq. (1), and by performing the resampling step at every time

index. Applied to the multitarget tracking problem described in Sec-

tion 2, this algorithm, summarized in Algorithm 1, has an asymptotic

complexity of O(MkNpNmax) per time index.

Algorithm 1 Sequential Importance Resampling (SIR) at time tk

1: for i = 1, . . . , Np do

2: Sample {x
(i)
k , e

(i)
k } ∼ p(xk, ek|x

(i)
k−1, e

(i)
k−1)

3: Compute the IS weight : w
(i)
k = w

(i)
k−1p(zk|x

(i)
k , e

(i)
k )

4: end for

5: Normalization of the weights

6: Resampling Step

3.2. Resample-Move

Gilks and Berzuini introduced the Resample-Move algorithm [6],

which is one of the first methods to make use of MCMC in a sequen-

tial state estimation problem. The algorithm takes the output of a

standard particle filter after resampling, and applies a MCMC move

to each particle using the posterior distribution p(s0:k|z0:k) as the

stationary distribution. The main idea is that moving each particle

after resampling will improve the diversity of the particle popula-

tion, and this can only improve the representation of the posterior

distribution. As mentioned in [11], the Resample-Move algorithm

does not require each MCMC chain initiated to have a burn-in pe-

riod. This is because the output of the particle filter is already a

reasonable approximation to the posterior filtering distribution.

For this multitarget tracking problem, the MCMC-move consists

in sampling successively each of the individual targets and their as-

sociated existence variables by using a Metropolis-Hastings-within-

Gibbs step with the prior distribution, p(xk,n, ek,n|xk−1,n, ek−1,n),
as proposal. The asymptotic complexity of this Algorithm 2 is

O(MkNpNmaxNit.) per time index.
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Algorithm 2 Resample-Move at time tk

1: Steps 1 to 6 of the SIR

2: for i = 1, . . . , Np do

3: for k = 1, . . . , Nit. do

4: for n = 1, . . . , Nmax do

5: MCMC move of the nth target using a MH-within Gibbs

6: end for

7: end for

8: end for

3.3. MCMC-based Particle Algorithm

Markov chain Monte Carlo (MCMC) methods are generally more

effective than PFs in high-dimensional spaces. Their traditional for-

mulation, however, allows sampling from probability distributions

in a non-sequential fashion. Recently, sequential MCMC schemes

were proposed by [12–15]. These approaches are distinct from the

Resample-Move scheme [6] in particle filter where the MCMC algo-

rithm is used to rejuvenate degenerate samples following importance

sampling resampling. These methods [12–15] use neither resam-

pling nor importance sampling.

In the MCMC-based particle algorithm [15], a MCMC pro-

cedure is used to produce samples from the posterior distribution,

p(s0:k|z0:k), by approximating in Eq. (8), p(s0:k−1|z0:k−1) with

the empirical distribution obtained at the previous time index, Eq.

(9). The MCMC-move used in this scheme (Step 7 in Algorithm 3)

is the same than the one used in the Resample-Move. The asymp-

totic complexity of this method is O(MkNpNmax) if the initial

burn-in is chosen as NBurn-in = αNp with 0 < α < 1.

Algorithm 3 MCMC-Based Particle Algorithm at time tk

1: Sample {x(1)
0:k−1, e

(1)
0:k−1} ∼ p̂(x0:k−1, e0:k−1|z1:k−1) and

{x
(1)
k , e

(1)
k } ∼ p(xk, ek|x

(1)
k−1, e

(1)
k−1)

2: for i = 2, . . . , Np +NBurn-in do

3: Sample {x∗
0:k−1, e

∗
0:k−1} ∼ p̂(x0:k−1, e0:k−1|z1:k−1)

4: Sample {x∗
k, e

∗
k} ∼ p(xk, ek|x

∗
k−1, e

∗
k−1)

5: Accept or Reject the move {x
(i)
0:k, e

(i)
0:k} = {x∗

0:k, e
∗
0:k}

6: for n = 1, . . . , Nmax do

7: MCMC move of the nth target using a MH-within Gibbs

8: end for

9: end for

4. NUMERICAL SIMULATIONS

Consider a time-varying number of targets (max of 5) moving using

the near-constant velocity model defined in Eq. (4) as shown in

Fig. 1. Note that targets 1-3 are born at time k = 1, targets 4-5

are born at time k = 25, and target 1 dies at time k = 50. The

starting and stopping positions for each track are labelled with a

circle and triangle respectively. Individual target motions follow

the near constant velocity motion model with a sampling period of

τk = 3s and process noise variance σ2
x,n = 0.5. The observation

scene is a square of 5000m × 5000m. The parameters involved in

the observation model are ΛC = 20, Σx = 100 × I2. Numerical

simulations have been performed with two different values for the

average number of measurements issued from a specific target, i.e.

Scenario 1 : Λn
x = 1 (the probability that a target returns at least

one measurement is thus PDetect = 0.63) and Scenario 2 : Λn
x = 1.5

(PDetect = 0.78). Concerning the MCMC-based Particle algorithm,

we choose NBurn-in = Np/10. To capture the average performance,

we run 200 Monte-Carlo (MC) trials for each scenario with the same

target tracks but independently generated measurements.
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Fig. 1. True tracks in the xy plane. Targets move with near-constant

velocity along the paths shown. Start/Stop positions are shown with

©/△

Figures 2-(a) show the MC average of the estimated cardinal-

ity. From this figure, we can see that the various Monte-Carlo al-

gorithms are capable of adequately tracking the varying number of

targets in the observation scene. However, the MCMC-based particle

algorithm slightly outperforms the other ones in terms of cardinal-

ity error. The OSPA distance analysis (see Figs. 2-(b,c)) allows us

to compare tracking performances in terms of both localization and

cardinality errors [8]. The MCMC-based particle algorithm exhibits

better tracking performances than both the SIR and the resample-

move. The introduction of the MCMC move after the resampling

step of the SIR allows to increase tracking performance. But even

with 10 iterations (Nit. = 10), the Resample-Move still obtains

higher OSPA distance than the MCMC-based particle (cf. Fig. 2-

(c-1)).

Finally from Figure 3, as expected by the asymptotic complexity

of these algorithms (Section 3), the runtime of all these methods

grows linearly with the number of particles.
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Fig. 3. Runtime of the different MC algorithms

5. CONCLUSION

In this paper, we have compared various Monte-Carlo algorithms

that have been developed over the past years for sequentially ap-

proximating the filtering distribution in a general state-space model.

These methods have been successfully applied to detect, track and

identify multiple targets in very low probability of detection and
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Scenario 2 : PDetect = 0.78
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Fig. 2. Tracking performance with Np = 5000. Showing : Monte-Carlo average of the estimated cardinality versus time index (a-1,2). OSPA

distance versus time index (b-1,2). Time average OSPA distance versus the number of particles (c-1,2) (OSPA parameters : order p = 1 and

cut-off c = 150).

in hostile environments with heavy clutter. Simulations show that

the MCMC-based Particle approach exhibits better tracking perfor-

mance and thus clearly represents interesting alternatives to SMC

methods.
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