
Use of deep learning to develop continuous-risk
models for adverse event prediction from
electronic health records
Nenad Tomašev 1✉, Natalie Harris2, Sebastien Baur2, Anne Mottram1, Xavier Glorot 1,
Jack W. Rae1,3, Michal Zielinski1, Harry Askham1, Andre Saraiva1, Valerio Magliulo2,
Clemens Meyer1, Suman Ravuri1, Ivan Protsyuk2, Alistair Connell 2, Cían O. Hughes 2,
Alan Karthikesalingam2, Julien Cornebise 1,12, Hugh Montgomery4, Geraint Rees 5,
Chris Laing6, Clifton R. Baker7, Thomas F. Osborne 8,9, Ruth Reeves7, Demis Hassabis1,
Dominic King2, Mustafa Suleyman1, Trevor Back1, Christopher Nielson7,10,13,
Martin G. Seneviratne 2,13✉, Joseph R. Ledsam 1,2,11,13✉ and Shakir Mohamed 1,13

Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical
workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from
structured electronic health record (EHR) data. The protocol comprises five main stages: formal problem definition, data
pre-processing, architecture selection, calibration and uncertainty, and generalizability evaluation. We have applied the
workflow to four endpoints (acute kidney injury, mortality, length of stay and 30-day hospital readmission). The workflow
can enable continuous (e.g., triggered every 6 h) and static (e.g., triggered at 24 h after admission) predictions. We also
provide an open-source codebase that illustrates some key principles in EHR modeling. This protocol can be used by
interdisciplinary teams with programming and clinical expertise to build deep-learning prediction models with alternate
data sources and prediction tasks.

Introduction

Early prediction of patient outcomes can support data-driven health care, helping to target preventive
interventions and guide resource allocation. Rule-based scores are common in clinical practice for
risk stratification, for example, the National Early Warning Score for acute deterioration or the LACE
score for hospital readmission1,2. These scores are typically not personalized to the patient (the same
thresholds and coefficients are used population wide), rarely use temporal or trend information, have
a relatively limited input feature space and have been associated with high false-positive rates and
consequent alert fatigue3.

Running machine-learning (ML) models on continuously streamed electronic health record (EHR)
data could help to tackle some of the above limitations. ML models have been developed to predict a wide
array of clinical and operational outcomes, to risk-stratify patients and inform treatment decisions. Use
cases have ranged from mortality4 and length of stay (LoS) prediction5 to more targeted algorithms for
sepsis6, shock7 or delirium8. Recent studies have increasingly used deep-learning approaches9–12. To date,
few of these models have been validated prospectively and adopted in routine practice13. However
deployment studies are now being undertaken14. To support more widespread clinical implementation,
it is critical that upstream data science pipelines are robust and well specified.

In this protocol, we outline a practical workflow for developing deep-learning models with
structured EHR data (excluding free-text clinical notes), with a focus on continuous risk models for
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inpatient endpoints. We developed this workflow while establishing an acute kidney injury (AKI)
prediction model, introduced in Tomasev et al.15. The prediction of AKI is included here as the
primary exemplar. However, the protocol can be applied to a wide range of clinical or operational
use cases.

Overview of the protocol
The protocol involves five broad stages: (a) formal problem definition, (b) data pre-processing, (c)
architecture selection, (d) calibration and uncertainty estimation and (e) model generalizability evaluation.
The components of the protocol with greatest novelty include multitasking with physiological auxiliaries
(Step 6), separate training and evaluation masks (Step 16), architecture ablation (Step 22), calibration and
uncertainty estimation (Steps 26–28), clinically motivated operating points (Step 29) and temporal/
regional generalizability evaluations (Steps 32 and 33). The protocol is described with reference to the AKI
use case but is intended to be applicable to a range of prediction targets. In ‘Anticipated results’, we
present performance metrics on three additional endpoints: mortality, LoS and readmission. These
endpoints were chosen for this methodological work because they could be reliably timestamped in the
current dataset, and numerous ML benchmarks were available in the literature. We also present results for
alternate temporal configurations including different triggering schemes (i.e., static predictions versus
continuous or regularly triggered predictions) and different lookahead windows. The protocol could
feasibly be generalized to other targets over acute and chronic timescales, such as sepsis, intensive care unit
transfer or chronic disease progression.

It should be noted that the protocol allows only for associative modeling between input features
and outcome targets. Although not addressed here, causal inference (i.e., whether specific features
directly cause a particular outcome) using observational data is an active area of research that stands
to assist in knowledge discovery, robustness and fairness16.

The protocol is accompanied by an open-source codebase and synthetic dataset illustrating the
pre-processing stages (available at https://github.com/google/ehr-predictions). Although customiza-
tion is required to use this protocol on new datasets and tasks, we believe this is a useful high-level
framework that showcases some of the nuances of supervised learning with EHRs.

Expertise needed to implement the protocol
Successful application of the protocol requires interdisciplinary collaboration. Some steps call for
significant technical expertise in deep learning and should be executed by researchers with statistical
and ML skills, whereas others require clinical or operational knowledge and should be executed by
clinicians or informaticians. Prospective evaluation calls for experts in trial design and outcomes
evaluation. As a guide, Steps 1–6, 8, 15, 16, 24, 29 and 30 are likely to be clinician led, whereas Steps 7,
9–14, 17–23, 25–28 and 31–33 are likely to be engineer led. In Box 1, we provide a glossary of some of
the terms used in this protocol to facilitate understanding across disciplines.

Dataset requirements and limitations
Implementation of this workflow requires access to an EHR dataset. Here, we use an EHR dataset
from the US Department of Veterans Affairs (VA) prepared for our previous work on AKI
prediction15. The dataset consisted of de-identified longitudinal data on 703,782 adult patients across
172 inpatient and 1,062 outpatient sites collected using the Vista EHR system and associated data-
bases. Inclusion criteria were patients aged between 18 and 90 years admitted for secondary care to
medical or surgical services from the beginning of October 2011 to the end of September 2015. To
protect patient privacy, sites with fewer than 250 admissions during the 5-year time period were
excluded; 4 of the 1,243 health care facilities from which the VA is composed were excluded on the
basis of this criterion. All exclusion criteria were established before beginning the work. The actual
dataset size required for each specific application is dependent on many factors, including the patient
cohort, input feature space present and the endpoint of interest; for further details on power cal-
culations for clinical prediction models, we refer the reader to Riley et al.17.

Because of the patient population of the VA, the dataset consisted of 93.6% male subjects. The
dataset included laboratory tests, vital signs, medications, admissions, transfers, outpatient visits,
diagnoses as International Classification of Diseases, Ninth Revision (ICD-9) codes and procedures as
Current Procedural Terminology (CPT) codes.

Use of this retrospective dataset received Tennessee Valley Healthcare System Institutional Review
Board approval from the VA. All patient data were de-identified in accordance with the Health
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Insurance Portability and Accountability Act. Additional precautions were taken to safeguard patient
privacy: free text notes and rare diagnoses were excluded, many feature names were obfuscated (i.e.,
the feature value was preserved, but the name was replaced with a random string), continuous
variables were randomly jittered up to a maximum value of 10% of the population standard
deviation and all patient records were time-jittered, respecting relative temporal relationships
for individual patients.

Box 1 | Glossary

Ablation The process of removing components of the model architecture and retraining to quantify the performance attributable
to that component

AUPRC For a classification model, the area under the precision versus recall curve. Scalar value between 0 and 1, with higher
values representing superior performance. Useful in situations of class imbalance (between positive and negative
endpoint labels)

AUROC For a classification model, the area under the true positive versus false positive rates. Scalar value between 0 and 1. It
can be interpreted as the probability of giving a higher risk to a positive sample than a negative sample

Auxiliary target A label that is related to the primary outcome. It is used as an extra training signal and is designed to improve the
prediction performance of the model on the primary target

Baseline model A simpler model that is used to compare the performance of the deep model, typically, a logistic regression or tree-
based model

Calibration split The subset of patients used for measuring and correcting the calibration of a trained model. A well-calibrated model is
one in which the predicted risk matches the incidence of the outcome (e.g., 40% of patients with a 0.40 risk of AKI
should develop an AKI)

Classification Supervised learning problem where the goal is to assign a discrete label to the input (e.g., here we set up adverse event
prediction as a binary classification)

Encoder (neural
network)

A neural network whose purpose is to map the original input to a Euclidean space in a compact way. It can be seen as a
form of compression

Feature set All the input information that is fed to the model during training and evaluation

Generalizability The ability of the model to preserve performance on datasets different from the training data (e.g., from other sites
(cross-site generalizability) or other time periods (temporal generalizability))

Hyperparameter A parameter that is used for controlling the learning process (as opposed to learned during that process) (e.g., the
learning rate of the stochastic gradient descent optimizer, the size of the mini-batches and the number of layers of the
neural network)

Imputation The process of replacing missing values with plausible values. In our work, we use 0 imputation (i.e., all missing values
are set to 0), but more complex schemes can be used

Inference The process of triggering a model prediction (e.g., the risk of an adverse event over the next x hours for a given patient)

Label leakage When information about the outcome label has been inappropriately included in the input feature set (e.g., because of
inaccurate timestamping of a certain feature that would not have been available to the clinician until later)

Lookahead horizon The clinically informed time window that is used for making continuous predictions. This is used to define positive and
negative labels at each point in time

Numerical feature A feature that takes continuous values (e.g., vital signs and laboratory measurements)

Operating point The risk threshold that is applied to the output of the classification model (a value between 0 and 1) to define what a
positive prediction is. If the predicted risk is higher than that threshold, the binary outcome is set to be 1, and 0
otherwise

PR curve For a classification model outputting a continuous value between 0 and 1 (the risk or probability), the PR curve is a
graphical plot that displays the precision (positive predictive value) versus the recall (sensitivity). Each point on the
curve corresponds to a different threshold for the predicted risk

Prediction head The output of the last layer of a neural network model. There may contain one or more prediction heads

Presence feature A feature that takes binary values. In addition to encoding categorical features, presence features can be used to
encode missingness of numerical features

Recurrent neural
network

A neural network that is tailored for making predictions on temporal/sequential data

Regression Supervised learning problem where the goal is to assign a continuous value to the input (e.g., predicting the value of a
specific laboratory test)

ROC curve For a classification model outputting a continuous value between 0 and 1 (the risk or probability), the ROC curve is a
graphical plot that displays the true positive versus false positive rates. Each point on the curve corresponds to a
different threshold for the predicted risk

Test split The subset of patients used for reporting the final performance of the model. This is disjoint from all other splits

Training split The subset of patients used for learning the model’s weights by optimizing the loss function

Triggering frequency How often a model ‘fires’ (i.e., triggers inference) for a given patient (e.g., hourly)

Validation split The subset of patients used for evaluating the performance of the model during training, for the purpose of comparing
architectures and selecting hyperparameters
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Our dataset has limitations. The selection of auxiliary tasks and the input features for baseline
models were constrained by the panel of features available in the source EHR. Our model perfor-
mance was comparable with literature benchmarks; however, these models should be considered as
prototypes for demonstrating methods rather than as clinical-grade ML systems suitable for
deployment.

Although the dataset was drawn from a diverse range of health facilities and geographies within
the VA network, spanning >5 years, it was limited by a lack of gender diversity because of the
predominantly male patient population. Furthermore, the protocol does not explicitly deal with
fairness evaluation. Principles of ML fairness should infuse the entire protocol from problem con-
ception and dataset choice to evaluation strategy and deployment. We refer the reader to more
detailed discussions of fairness considerations18 and guidelines on transparent reporting19.

Our workflow assumes that the raw EHR data have been extracted in tabular format from a
research data warehouse. Although we provide exemplar data at different stages of pre-processing,
this is not intended as a canonical data representation. Standard EHR data models (e.g., Fast
Healthcare Interoperability Resources (FHIR) or the Observational Medical Outcomes Partnership
(OMOP) data model) can be used to construct input feature vectors or embedded as a vector
representation as per Rajkomar et al.20.

We did not use the unstructured text present in the EHR because of privacy concerns. This is an
important part of the information content present in EHR data and may improve model performance
for certain clinical tasks. Researchers wishing to embed clinical notes in their models are recom-
mended to consult the following references and consider pretraining approaches21–23.

Comparison with other protocols
Several guidelines for developing ML models with healthcare data have recently been published24–28.
These cover high-level principles such as problem selection, fairness, bias, model surveillance and
outcome evaluation across various data modalities. Our protocol details a practical methodology for
developing deep-learning models tailored to longitudinal EHR data, with guidance around data pre-
processing, architecture selection, hyperparameter sweeps, post-processing and evaluation.

In addition, there are initiatives to create standardized reporting guidelines for ML studies using
clinical data, including the TRIPOD-ML29 and STARD-AI frameworks30, which should be referenced
early in study design. It is also worth noting the recently released guidelines for reporting on clinical
trials of ML systems, including CONSORT-AI31 and SPIRIT-AI32.

There is a wealth of recent work using deep learning for predictive modeling with EHRs10,20,33–38.
Although direct comparison of model performance against these prior works is challenging because
different datasets are used and experimental setups for the same task can differ (in terms of endpoint
definition, lookahead window, triggering frequency, etc.), in ‘Anticipated results’ we endeavor to
compare our results for mortality, LoS and readmission with previous ML benchmarks.

Materials

Training dataset
A structured EHR data set was required for this work ! CAUTION It is important to ensure that ethical
approval has been obtained before using EHR data, including consideration of implied or explicit patient
consents. The example results shown here were derived from an EHR dataset from the VA. We obtained
permission to use this for these studies from the Tennessee Valley Healthcare System Institutional
Review Board.

Hardware
The protocol and accompanying codebase can be executed on standard computational hardware.
There are minimal memory requirements for data storage and pre-processing that depend on the size
of the dataset. Model training can be run on central processing units or graphics processing units;
having access to greater computational resources would allow faster execution and wider exploration
of hyperparameters.

Software
● Data processing framework: Apache Beam (https://beam.apache.org/)
● Plotting library: Matplotlib (https://matplotlib.org/)39
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● Scientific computing library: Numpy (https://www.numpy.org/)
● Scientific computing library: Scipy (https://www.scipy.org/)
● Plotting library: Seaborn (https://seaborn.pydata.org/)
● Machine learning library: Scikit-learn (https://scikit-learn.org/)40

● Machine learning library: Sonnet (https://github.com/deepmind/sonnet/)
● Machine learning framework: TensorFlow (https://github.com/tensorflow/tensorflow/)
● Machine learning library: XGBoost (https://github.com/tensorflow/tensorflow/)

Procedure

Formal problem definition
1 Evaluate the feasibility of a clinical use case. Ensure that the selected clinical use case is feasible by

checking that the following basic conditions are met: (i) there is a computable definition of the
target outcome or sufficiently large manually labeled training dataset, (ii) there is a predictive signal
in routinely collected structured EHR data (consultation with specialist clinicians may help identify
such signals) and (iii) there is sufficient temporal resolution in the EHR for the prediction to be
actionable (e.g., weekly aggregate data are not appropriate for a high-frequency prediction that is
most useful the day before the outcome). Clinician and patient engagement, through steering
groups and/or structured interviews, can help refine the research question and map out real-world
clinical pathways41. This ensures that the outputs of the model can be integrated into
existing clinical workflows. It is also important to identify who the likely end users will be and
thus the most appropriate potential channels for model output (e.g., via interruptive versus
non-interruptive alerts42).

2 Define outcome labels. Identify an appropriate ground truth outcome label for supervised learning.
One approach is to use e-alerting criteria, such as the National Health Service AKI e-alert43 or the
St John Sepsis Agent44, which use data available only up to the time of the trigger. Another is to use
data from the entire admission to timestamp outcomes of interest, such as using downstream
outcomes to identify the most severe cases of AKI or sepsis. Outcomes may also be defined on the
basis of clinician actions (e.g., sepsis definitions based on the collection of a blood culture or
antibiotic prescriptions); however, note that this may introduce biases and encourage the model to
predict outcomes only on those patients who have historically been investigated/treated. The gold
standard method to define outcome labels is manual chart review, which may be used in
conjunction with one or more of the above methods to validate the labeling approach. One major
pitfall is label leakage, where explicit indications of the outcome label are present at an earlier
timepoint. Some studies suggest enforcing a gap time between the outcome label and the prediction
trigger to reduce this risk45. In some cases, the width of the timesteps may have the effect of
introducing a time buffer (although the gap is variable); e.g., in Tomasev et al.15, all entries in the
same 6-h bucket as the outcome label were excluded from the model input.

3 Assess dataset quality. Produce a formal dataset specification with descriptive statistics about each
data element, including outliers and degree of missingness. Assess the distributions of vital signs
and laboratory tests and compare against known physiological ranges. Harmonize admission
records on the basis of LoS to concatenate overlapping admissions. Assess and report on the
demographic diversity of the dataset. Consider using mitigation strategies to address data
imbalance (e.g., oversampling/undersampling). Compile a random sample of the data for manual
assessment by clinical experts, with particular focus on the fidelity of the outcome label.

4 Define inclusion and exclusion criteria. In preparation for future prospective deployment, define
inclusion/exclusion criteria on the basis of baseline criteria available from the point where model
inference begins, rather than retrospective criteria such as percent missingness. Consider factors
that are dependent on the patient, such as demographics, as well as environmental factors such as
clinical setting or ward.

5 Define time formulation. Define the trigger time(s) and lookahead window(s) for prediction tasks
(Fig. 1). The trigger time refers to when, during an admission, inference will be performed—this
may be a single static prediction (e.g., at 24 h after admission), continuous predictions
(e.g., triggered on an hourly basis) or dynamic predictions triggered when some criteria are satisfied
(e.g., when vital signs are out of range). The lookahead window is the time interval after the trigger
time in which the endpoints are defined. For AKI prediction, we trialed lookahead windows
ranging from 6 to 72 h in 6-h increments. The trigger time and lookahead window should be
guided by domain knowledge about when early clinical markers may manifest and the window
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within which a prediction is clinically actionable. The interventions for AKI include medication
review, fluid management, septic workup, etc., all of which may be effective in the 48 h before AKI
onset46. For mortality prediction, longer lookaheads (30 or 90 d) can be considered, which may
be appropriate for sub-acute decisions about the limits of care and when to refer for
palliative services38.

6 Identify auxiliary prediction targets. Auxiliary prediction targets can help to improve model
performance on the primary prediction task, because concurrently learning multiple clinically
related endpoints may lead to a better internal data representation. The choice of auxiliary tasks
and how to optimize across the losses (also known as multitasking) are topics of active
research33,47,48. At a high level, the goal is to identify physiological observations directly related to
the primary clinical endpoint. In the case of AKI, we used the maximum values (across the same set
of lookahead windows as for the primary AKI endpoint) of seven relevant laboratory tests
associated with renal function: creatinine, urea nitrogen, sodium, potassium, chloride, calcium and
phosphate. The maximum value was chosen because increased levels of most of these electrolytes
are commonly associated with AKI. The error derived from regressing these auxiliary targets is
combined with the loss associated with the main training objective at each timestep to update the
weights of the neural network. Auxiliary prediction tasks can also be used to model competing
risks, as well as regularize the model and help with the explainability of predictions. The panel of
auxiliary tasks can be refined during training on the basis of the improvement in performance on
the validation set.

Data pre-processing
7 Create data splits. Partition the dataset by randomly allocating records into the following splits:

training, validation, calibration and test. It is common practice to allocate all records for each
individual patient to separate data splits, in order to test for generalizability across unseen patients
and to avoid information leakage. Alternative options include splitting the sequences of events
across time and ordering the splits chronologically. This helps assess the generalizability of the
models with respect to the non-stationarity of hospital processes and potential changes in clinical
practice across time. The minimum size of each split needs to be sufficient to derive valid statistical
conclusions and should be based on an appropriate power calculation. Assigning 80% of the data to
the training split, 5% to the validation split, 5% to the calibration split and 10% to the test split is a
reasonable choice for sufficiently powered datasets and was used to develop the model presented in
Tomasev et al.15. This enables just the training set to be used for model development (Steps 8–25),

Outpatient events

6 h

New data input 
at timestep

Risk of AKI within
next 48 h

Diagnoses Medications Observations Procedures Laboratory results

Sequential
patient history

6 h

Inpatient events

Risk of AKI predicted
continuously through admission

Now

100%

0%

Future events

Fig. 1 | Sequential risk prediction from EHR data. Rolling predictions using structured EHR data, here illustrating the prediction of AKI within 48 h at a
6-hourly triggering frequency.
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with the test set only used for analysis when the final model parameters are fixed. A calibration
split is especially critical if the model is going to be used as a risk score or for continuous
alerting (see Step 26).

8 Feature engineering. Seek input from clinicians and informaticians familiar with the source data to
identify which features to use. Appropriate rationales for eliminating features include poor data
quality and features overly specific to a particular site, although the research decisions on which
features can be removed will be specific to every project. Identify a set of manually defined features
that may hold predictive value for the outcome of interest (e.g., clinically relevant ratios such as the
ratio of blood urea nitrogen to serum creatinine). Manually engineered features are most important
for the baseline models against which the deep models will be evaluated. The feature engineering
pipeline should be defined using the training set only: estimating feature statistics from the entire
dataset risks leaking information from the test set, and because the choice of features may influence
model performance, it is important that the test set does not influence this decision.

9 Generate a sequential representation of patient data. First, define the length of the discrete time
window (timestep size). We set this to 6 h in Tomasev et al.15; however, this can be made shorter or
longer (e.g., minutes or days) depending on the granularity of the data and triggering frequency of
the prediction. Note that the timestep size must be less than or equal to the triggering frequency.
There is a trade-off to be made in selecting the timestep size: short timesteps risk being empty
because of irregular sampling of EHR entries; however, longer timesteps may lead to loss of
temporal information because the ordering of events is not preserved within each step. Repeated
values for a given feature within a time bucket must be aggregated—typically using the mean or
median, but other aggregation functions are valid. For entries where the timestamp is unknown, use
a surrogate bucket; for example, many EHR events may be associated with a day but no specific
timestamp and thus can be grouped into a surrogate bucket. This bucket is assigned to the end of
that day to prevent leakage of future information in previous buckets. For empty timesteps during
intervals where inference must be regularly triggered (e.g., during an inpatient admission), include
an empty set. Finally, concatenate the entire patient record into a sequential representation running
from the first to the last available data point, organized into distinct clinical events within inpatient
and outpatient episodes (Fig. 2). Labels for the primary outcome and auxiliary targets should be
appended at each timestep.

10 Clean EHR timestamps. Check whether entries have a discrepancy between the EHR timestamp and
the true availability of the data to clinicians. In the raw dataset, for example, diagnosis codes were
uniformly timestamped to be available at the beginning of admission even though the actual
diagnosis was often assigned at a different time (typically at the time of discharge). Although this
granularity was not available in our research dataset, it might be possible to delineate several
important timestamps for each entry; for example, a laboratory test might have timestamps for
when the order was placed, when the sample was collected and when the result was visible in the
EHR. It may be worth encoding each of these timesteps as distinct events or only using the
lattermost timestamp. Where there is ambiguity around timestamps, move the relevant entries to
the end of the relevant episode to avoid information leakage.

11 Aggregate historical features. Compute historical aggregates for a set of important features to
include in the input for baseline (non-recurrent) models. Which historical features to include and
the duration of past medical history (lookback window) will depend on the primary outcome.
Define a set of statistical functions for feature aggregation (e.g., count, mean, median, standard
deviation, minimum, maximum and average difference between subsequent measurements). These

Patient Episode Admission Clinical event Clinical event entry

Timestamp
Domain (laboratory result, vital sign,
etc.)

Feature

Outcome label (e.g., AKI 1+
within 48 h)

Value

Clinical event entries

Labels

Admission metadata

Clinical events

Outpatient event

Clinical events

Admissions

Outpatient events

ID

Demographic metadata

Episodes

Labels

Fig. 2 | Sequential representation. The sequential representation consists of a sequence of clinical event entries grouped into clinical events for each
time bucket, which in turn are grouped by episode (admissions versus outpatient events). Outcome labels are a derived data field based on the
triggering frequency and prediction window.
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must be treated as distinct features leading to a dimensionality increase. For non-numerical
features, record a binary flag for whether they were present in the lookback window. For the AKI
model, we used 48 h for acute trends, and chronic trends were captured by considering 6-month,
1-year or 5-year aggregates.

12 Vectorize the event sequence. Vectorization refers to transforming the sequential data representation
into a feature vector appropriate for model input at each timestep. Because there can be valuable
information in the pattern of missing data, a useful strategy for continuous features is to explicitly
encode binary indicator variables (presence features) to enable the model to distinguish between a
missing value in that timestep and a numerical value of zero49. Although zero imputation in
conjunction with presence features was used in Tomasev et al.15, there are numerous imputation
strategies available for missing data, including carry-forward, mean/median and physiological
reference imputation, as well as more advanced methods that have shown promise in EHR time
series, including multivariate imputation by chained equations50, Gaussian processes51 and
generative adversarial networks52. Continuous features may also be associated with additional
indicator variables denoting whether the value is high/normal/low based on local reference ranges.
Represent categorical features as presence features using one-hot encoding. The total number of
variables in this work was 620,000, of which ~165,000 were used in the final vectorized
representation; 4% were numerical, and the remainder were presence features.

13 Cap outlier numerical values. For every input feature, cap values at the the 1st and 99th percentiles
on the basis of the training split (or appropriate maximum/minimum bounds guided by clinician
input). This is important because data entry errors can be present, which result in physiologically
implausible data being present in the data set. An example of an extreme outlier is an
age >150 years.

14 Normalization and sparse encoding. To improve convergence speed, normalize the capped
numerical input features to unit range or standardize to unit variance. Both approaches yielded
similar results in Tomasev et al.15, and we would recommend experimenting with both methods.
Sparse encoding allows for a more efficient data representation of the sparse EHR feature space
where only the explicitly non-zero values are represented. The sparse tensor consists of separate
dense tensors denoting indices, feature values and the original dense shape. This can then be
converted to the required sequence example format for model input (Fig. 3).

15 Select performance metrics. Define a set of relevant metrics for the primary use case as well as the
auxiliary prediction targets. Select (i) development metrics to be used for architecture selection and
(ii) final evaluation metrics to report. For classification tasks, use both the area under the precision-
recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) in
model development. Although the AUROC is ubiquitous and is thus important for comparison
with prior work, AUPRC is better suited to class imbalances53 and we recommend using AUPRC
for model selection. Early prediction histograms are also valuable for fixed-window prediction tasks
to demonstrate the latency between prediction and outcome (see Fig. 3 in Tomasev et al.15). Time-
to-event or survival modeling is an alternate approach that may be used for continuous prediction
tasks, for which there are emerging deep-learning formulations54. For all evaluation metrics in
continuous predictions tasks, there is an important distinction between timestep-level metrics and
outcome-level metrics. For example, the timestep precision and recall can be calculated by
averaging the performance across all timesteps for which the model is being evaluated; however, we
can also calculate an outcome-level recall by examining what percentage of the outcomes (e.g., AKI
episodes) have at least one correct prediction within a 48-h window preceding onset. Depending on

Raw EHR

Sequentialize Vectorize
Feature stats &
outlier filtering

Normalize
Sparse

encoding

Sequence example

Fig. 3 | Pre-processing workflow. Conversion of raw EHR data into a sequential representation, followed by vectorization, normalization and
sparse encoding.
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the clinical scenario, it may be acceptable to introduce tolerance in evaluation (e.g., accepting a
positive prediction 48–60 h before AKI onset as a true positive (as opposed to a false positive under
a strict 48-h lookahead)). However, the metrics reported in ‘Anticipated results’ were computed
without a tolerance buffer, which provides a more conservative estimate of model performance.

16 Interval censoring. Define interval censoring masks for both model training and evaluation. A mask
refers to a sequence of binary flags overlaid on the event sequence, which indicates whether a
timestep is included in training or evaluation. For example, in the AKI prediction use case, patients
undergoing dialysis were excluded from both training and testing splits using a number of
procedure codes to define the mask. Importantly, training and evaluation masks may be different.
For example, intervals where the patient had AKI were included in the training procedure because
there are still valuable physiological relationships between this timestep and future creatinine
values; however, they were excluded from evaluation because these timesteps would not be alerted
on in practice. Adapting the training and evaluation masks can enable versatile experimental setups
(e.g., predicting inpatient mortality only at points where the patient triggers a National Early
Warning Score alert). After evaluation masks have been defined, it is possible to compute the
outcome prevalence at a patient level (i.e., percentage of patients with AKI) and at a timestep level
(i.e., percentage of timesteps with a positive label for AKI within 48 h). This class distribution
should be reported alongside a model to contextualize the performance metrics.

Model architecture selection
17 Train baseline models. Train a panel of baseline models, such as logistic regression or XGBoost55.

The choice of baselines should be motivated by prior literature benchmarks. For these models, a
subset of clinically relevant and manually engineered features (Step 8) may be selected.
Interrogating the coefficients and feature importances of baseline models can assist in identifying
label leakage and guide redefinition of the outcome label if required. Confidence intervals for the
performance metrics of baseline models can be calculated using a percentile bootstrap estimator56.

18 Feature embedding. For each timestep, transform the sparse input tensors into a lower- dimensional
continuous representation (i.e., embedding) that can be used as an input to the deep recurrent
architecture. Multiply the sparse tensor by a lookup-embedding matrix that is randomly initialized.
When multiple features are present at a given timestep, aggregate the lookup embeddings (we
summed embeddings, but alternate aggregation functions can be used). Pass this to a multilayer
perceptron (MLP)-embedding module with residual connections and L1 regularization to reduce
overfitting. Sweep over a range of embedding sizes (we used a two-layer embedding module with
size 400). In Tomasev et al.15, there were separate embedding modules for different types of input
features (numerical versus presence), and the outputs were then concatenated. Autoencoders (AEs)
or variational AEs may be trialed, as these have shown promise in learning richer patient
representations for predictive modeling57.

19 Trial multiple deep architectures. Implement a range of recurrent (and optionally convolutional)
frameworks that receive the feature embeddings and feed into the primary and auxiliary output
heads. Make the frameworks configurable with respect to recurrent cell types and their parameters,
as well as different types of convolutional kernels. The following are some of the recurrent neural
network (RNN) cells that can be trialed: long short-term memory (LSTM)58, update gate RNN59,
intersection RNN59, simple recurrent unit60,61, gated recurrent unit (GRU)62, neural Turing
machine (NTM)63, memory-augmented neural network64, differentiable neural computer (DNC)65

and relational memory core66. Where there are multiple training heads (e.g., the primary output
and the auxiliary tasks at various lookahead horizons), weights may be shared through the deep
model, culminating in logistic layers specific to each task. Consider adding a cumulative
distribution function to these logistic layers to encourage monotonicity in prediction outputs across
overlapping lookahead horizons (e.g., the risk of AKI within 48 h should be greater than or equal to
the risk within 24 h). A comparison of deep architectures and baseline models is shown in
Supplementary Table 4 in Tomasev et al.15. The architecture used here (Fig. 4) is a three-layer
LSTM with highway connections67 followed by linear layers for the primary outcome (AKI) and
auxiliary heads (laboratory test regressions).

20 Set up the model optimizer. By comparing the predicted output and the ground truth labels,
compute a scalar loss value for each timestep. Next, compute scalar losses for each auxiliary task. In
Tomasev et al.15, the cross-entropy loss function (Bernoulli log-likelihood) was used for binary
outcome prediction, and L1/L2 losses were used for the auxiliary laboratory test regressions.
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Optionally, re-weight the loss to account for skew in the target distribution. Define a composite loss
as a weighted sum of primary and auxiliary losses, plus regularization losses from the embedding
and model. Use the computed loss alongside a mini-batch optimization algorithm (e.g., stochastic
gradient descent, Adam or RMSProp) to iteratively adapt the weights of the neural network. Train
using the training data split until convergence. Select the optimal learning regime (learning rate and
decay) on the basis of hyperparameter sweeps (see Step 21).

21 Run an iterative sequence of hyperparameter sweeps. Define hyperparameter sweeps on the basis of
domain knowledge and previous literature. As an example, see Table 1 for the ranges of
hyperparameters that we tested. Initially perform hyperparameter sweeps without auxiliary tasks to
find a performant set of hyperparameters for the main task; then, fine-tune the hyperparameters
from that starting point, while executing sweeps to optimize the weight of the auxiliary loss. If target
performance is not reached, revisit and expand earlier steps of data pre-processing and architecture
selection. In each hyperparameter sweep, formulate a hypothesis for which architecture changes are
likely to lead to performance improvements on the basis of ML expertise. For example, overfitting is
a significant risk, especially when the feature space is sparse and high dimensional. Mitigating
strategies include reducing the RNN cell size, increasing regularization, introducing drop-out or
increasing the auxiliary loss weight. For each of the hyperparameter combinations, train a model on
the training split and evaluate on the validation split (see Step 15), optimizing for both AUPRC and
AUROC. Select the best performing configuration at the end of this process as the final model
architecture at this stage.

22 Perform ablation studies. The purpose of ablation is to minimize model complexity while preserving
performance. Take the final model architecture from the previous step and define a set of
components to remove (i.e., ablate) to assess their individual contributions. For example, this can
include the number of stacked layers in the deep model, additional feature types like the historical
aggregates, regularization techniques and auxiliary prediction tasks. For each ablation experiment,
train a new model on the training set. Next, evaluate each of the ablated models on the validation
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Deep embedding

Deep model

Auxillary targets

Auxillary predictions

RNN
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Fig. 4 | Deep recurrent architecture. Numerical and presence features are embedded in parallel, feeding into a multitask deep recurrent highway
network architecture, with shared weights until final logistic layers for the primary versus auxiliary targets. The network was trained end-to-end
including the embedding modules. Image reproduced from ref. 15.
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set. To test for statistical significance, train a collection of ablation models and calculate confidence
intervals on the average performance using bootstrapping (see Step 28). If any of the ablated models
perform at least as well as the more complex final model, modify the architecture accordingly to
favor the simpler version. Repeat this process until the model can no longer be simplified without
significant loss of performance. Ablation results for AKI can be seen in Supplementary Tables 10
and 11 of Tomasev et al.15.

23 Compute feature saliency. Estimating the contribution of individual features can aid in
understanding what the model is learning, and can also be useful for quality assurance to protect
against label leakage and spurious correlations. In Tomasev et al.15 and ‘Anticipated results’ here,
we performed occlusion analysis that estimates a feature’s contribution by evaluating the change in
predicted risk when that feature is individually occluded68. The occlusion process is similar to
replacing a feature with a baseline value69. A feature was occluded by setting both its numerical
value and associated presence feature to 0; that is, we define the baseline as an absent feature.
Feature attribution can then be evaluated by averaging the deviation in predicted risk under
occlusion over an interval for a single patient (local saliency) or over all timesteps for the entire

Table 1 | Hyperparameter sweeps used for the AKI model

Hyperparameter Values considered

RNN cell type LSTM, gated recurrent unit, update gate RNN, simple recurrent unit,
intersection RNN, memory-augmented neural network, NTM, DNC,
relational memory core

RNN cell size 100, 150, 200, 250, 300, 400, 500

RNN num. layers 1, 2, 3

Embedding num. layers 1, 2, 3

Embedding dimension per
feature type

200, 250, 300, 400, 500

Embedding combination Concatenate, sum

Embedding architecture type MLP, AE, variational AE

Embedding reconstruction loss weight 1 × 10−2, 1 × 10−3, 1 × 10−4

Embedding reconstruction
sampling ratio

1, 2, 5, 10

Optimize directly for AUPRC On, off

Highway connections On, off

Residual embedding connections On, off

Input dropout 0, 0.1, 0.2, 0.3

Output dropout 0, 0.1, 0.2, 0.3

Embedding dropout 0, 0.1, 0.2, 0.3

Variational dropout 0, 0.1, 0.2, 0.3

Input regularization type None, L1, L2

Input regularization term weight 1 × 10−3, 1 × 10−4, 1 × 10−5

BPTT window 32, 64, 128, 256, 512

Embedding activation functions Tanh, ReLU, Leaky ReLu, Swish, ELU, SELU, ELiSH, Hard ELiSH,
Sigmoid, Hard Sigmoid

Auxiliary task loss weight 0, 0.1, 0.5, 1, 5, 10

Learning rate 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5

Learning rate decay scheduling On, off

Learning rate decay num. steps 6,000; 8,000; 12,000; 15,000; 20,000

Learning rate decay base 0.7, 0.8, 0.85, 0.9, 0.95

Batch size 32, 64, 128, 256, 512

NTM/DNC memory capacity 64, 128, 256

NTM/DNC memory word size 16, 32, 64

NTM/DNC memory num. reads 6, 10

NTM/DNC memory num. writes 1, 2, 3

BPTT, backpropagation through time; num., number.
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cohort (global saliency). Please note that feature saliency techniques were not tailored for
multivariate heterogeneous time series and we advise caution in their use.

24 Failure case analysis. Compute timestep-level and outcome-level metrics for all subjects in the
validation set. Compile a set of representative success and failure cases (see Supplementary Material
in Tomasev et al.15 for example plots). Cases should be evaluated on the basis of discriminative
performance (was the ground-truth label accurate?), as well as actionability (could this alert have
affected the clinical trajectory of this patient?). Detailed case review can be targeted toward certain
clinical subgroups or cohorts where model performance is poor, in an attempt to mitigate against
hidden stratification in model performance (where performance varies in clinically meaningful
ways between patient subsets)70.

25 Define the final model architecture. Define the resulting model architecture as final and do not
revisit any of the previous steps at this point. Use the fixed set of parameters corresponding to this
model to compute the predictions for all timesteps in all patients for each data split.

Risk calibration and uncertainty
26 Calibration. A well-calibrated risk model is one in which the predicted risk matches the incidence of

the outcome (i.e., 40% of patients with a 0.40 risk of AKI in 48 h should develop an AKI in that time
frame). This is critical if a model is to be deployed as a clinical risk stratification tool. Deep-learning
models with softmax/sigmoid output trained with cross-entropy loss are prone to miscalibration.
Recalibration is often necessary to ensure that consistent probabilistic interpretations of the model
predictions can be made71. Use the previously defined calibration set to align the predicted values
with the underlying probability of the adverse event occurring at a given timestep. One approach is
to fit an isotonic regression model on the predictions against the target variable72. Assess the quality
of the calibration by comparing uncalibrated predictions to recalibrated ones using Brier score and
reliability plots73 (see Extended Data Fig. 3 in Tomasev et al.15).

27 Estimate uncertainty of individual predictions. To quantify the uncertainty of model predictions
(i.e., prediction-level uncertainty), train an ensemble of multiple models with a fixed set of
hyperparameters but different random initial seeds74,75. To get the uncertainty ranges for each
prediction, take the set of predictions from all models and trim the distribution tails depending on
the desired level of confidence. Note that alternative uncertainty estimation methods have been
explored in the literature, including Monte Carlo dropout76 and Bayesian neural networks77, the
latter of which can enable efficient patient-level uncertainty estimation via a single model.

28 Estimate performance uncertainty. To gauge uncertainty on a trained model’s performance (i.e.,
performance uncertainty), calculate confidence intervals of performance metrics (AUROC and
AUPRC) using bootstrapping. First, sample patients from a single split with replacement (200
resamples is a reasonable choice to calculate 95% confidence intervals). Next, compute the pivot
bootstrap estimator using resampled values56. Uncertainty estimates should be computed on the
validation split during model development and on the test split for final performance metrics.

29 Clinically motivated operating points. Performance metrics are dependent on the choice of an
operating point (OP). Choose multiple OPs on the basis of the PR curve of the final model and
report the performance under each78. In consultation with clinical experts, evaluate which operating
points are most clinically significant on the basis of the validation set metrics (e.g., for AKI an OP of
two false positives for one true positive was chosen as being acceptable to assist a nephrology
consult team in screening an inpatient population). Results for multiple OPs are shown in Fig. 2
and Extended Data Table 4 in Tomasev et al.15. Note that because OPs are set on the validation
split, they may not lie exactly on the precision recall (PR) curve computed from the test split.

Model generalizability evaluation
30 Analyze model performance across subpopulations. Define a set of clinical subpopulations relevant

to the outcome of interest. This could include demographic and clinical characteristics. For the AKI
prediction study, our subgroups included patients with chronic kidney injury, diabetes and medical/
surgical admissions. Report the performance, including confidence intervals on each subpopulation.
In particular, consider the performance and consequent resource allocation across protected groups
(i.e., subpopulations vulnerable to health disparities) as part of a broader ML fairness evaluation18.

31 Quantify the expected daily alert rate. Chronologically align all the patient time series from the test
set. For each day in the longitudinal test set, compute the percentage of inpatients where the model:
(i) produced a true-positive alert, (ii) produced a false-positive alert without having provided a
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true-positive alert within a certain prior time window and (iii) did not produce any alerts. Compute
the mean daily alert rate across all days in the longitudinal set. Report this metric to guide the likely
resource burden in future prospective evaluation.

32 Evaluate temporal generalizability on future unseen data. Model performance may differ in
important ways when prospectively deployed because of data drift79. Simulate the generalizability of
models to future, unseen data. Choose a point in time tp such that ~80% of data entries occur before
time tp and ~20% occur after time tp (Fig. 5). Train a model using the final architecture determined
in Step 25 and data only from before time tp in the training split. Note that because
hyperparameters were tuned using data from after tp, this is an approximation, and complete re-
tuning with the pre-tp test set would be the most rigorous approach. Generate model predictions for
the entire test split. Generate 95% confidence intervals of AUPRC and AUROC for predictions
made before tp and for predictions made subsequent to tp. Compare confidence intervals
to determine if model performance on future unseen data is comparable to performance on
historic data.

33 Evaluate regional generalizability in simulated cross-site deployments. External validation, where
model performance is computed on a different population/dataset, is a critical part of model
evaluation. If multicenter data are available, choose a split in hospital sites such that ~80% of
patient admissions occur at sites in group A, and ~20% occur at sites in group B (Fig. 6). For single-
site data, this split could be done in other ways (e.g., by ward). Train a model using the final
architecture determined in Step 25 and the training split, excluding data entries from admissions at
sites in group B (note the hyperparameter leakage issue in the step above). Run inference to
generate model predictions for the test split. Compare performance metrics with confidence
intervals to determine if model performance for unseen sites is comparable to performance for sites
used during training.

Troubleshooting

In this section, we highlight several common issues that may arise during the implementation and
execution of the protocol: data issues, problem definition issues and software implementation issues.

Data issues
EHRs contain routinely collected data and are therefore prone to data entry errors and incon-
sistencies. Additional errors can be introduced in the process of exporting and de-identifying the data
before making it available for research. These errors can adversely affect the performance of
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Fig. 5 | Evaluating temporal generalizability on future unseen data. Performance metrics on the test split before tp are compared to those on the test
split after tp to determine if performance is preserved on future unseen data.
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predictive ML models. Ideally, all data issues would be uncovered early while performing the thor-
ough quality assessment outlined in Step 3; however, this is not always possible. It is important to
regularly check the integrity of the data and labels throughout model development, as well as
maintain an open communication channel to the data partners and clinical experts.

Problem definition issues
The definition of the prediction endpoints (Step 2) has a significant impact on model performance
and ultimate utility. Many clinical concepts lack computable definitions, and the definitions available
have often been created for large-scale epidemiological studies rather than patient-level predictions.
In the case of sepsis, for example, multiple EHR definitions are available that are known to capture
different patient cohorts80. The input of clinicians and informatics experts should be sought to ensure
that the target outcomes are appropriately defined.

Software implementation issues
The protocol involves significant software engineering work to develop the data pre-processing
pipeline, deep-learning architectures, baseline models and evaluation framework. The software
implementation needs to be thoroughly tested in accordance with best practices of unit testing and
integration testing. Automated testing should be complemented by careful error analysis (Step 24),
which is critical in uncovering unanticipated implementation issues. It is worth noting that imple-
mentation issues can manifest themselves in different ways and that these errors do not always lead to
lower estimated model performance metrics. For example, errors in data processing could lead to data
being presented to the models out of order, artificially enhancing the perceived predictive
performance.

Timing

Time estimates to execute this protocol vary greatly depending on the problem formulation, available
data, team size and computational resources available. In Table 2, we provide estimates for both the
design/development and the execution of different protocol steps, for a small-sized team working on a
moderately-sized EHR dataset with access to appropriate infrastructure. This also assumes a full
reimplementation, rather than reuse of any open-source code for component analyses.
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Fig. 6 | Evaluating regional generalizability in simulated cross-site deployments. Performance metrics on test split predictions made during
admissions at sites in group A are compared to those for test split predictions made during admissions at sites in group B.
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Anticipated results

Detailed results for various formulations of the AKI task are provided in Tomasev et al.15.
To demonstrate that this protocol can be generalized to other tasks and time formulations, we
describe below how we used our workflow to build predictive models for three additional endpoints
that were not included in Tomasev et al.15: mortality, LoS and hospital readmission. These endpoints
were chosen because the endpoint labels were possible to define in our dataset with reasonable
fidelity, numerous ML performance benchmarks exist in the literature and the endpoints are common
operational targets where analytics may deliver value81. Below, we describe how the protocol was
adapted for the additional endpoints.

Adjustments to Step 2 (outcome labels)
Inpatient mortality
The mortality label was based on a timestamped mortality flag, which included both in- and out-of-
hospital mortality. To avoid label leakage, the sequential representation was masked from the 6-h
time bucket in which the mortality flag occurred. The inpatient mortality rate was 2.1%.

LoS
LoS was defined as the remaining LoS from the trigger time. The median (interquartile range) LoS
across all admissions was 3 (1–7) d, with a mean of 9.7 d because of a number of very long inpatient
admissions. Experiments were set up as binary classification tasks, predicting remaining LoS ≤2 or ≤7
d. Previous work has defined prolonged LoS prediction as total LoS >7 d20 or as a regression task82;
however, for the purposes of showing multiple time formulations with a consistent lookahead win-
dow, we have chosen remaining LoS. To avoid label leakage, evaluation was not performed in the final
time bucket of an admission.

30-day readmission
Readmission was defined as any inpatient admission to a VA facility within 30 d of hospital discharge.
The percentage of discharged patients readmitted within this time window was 18.6%.

Adjustments to Step 5 (time formulations)
To demonstrate versatility of the architecture to time formulations, the mortality and LoS tasks were
set up as both continuous predictions (triggered every 6 h) and static predictions (triggered at 24 or
48 h after admission). Readmission was modeled only as a static task at the time of discharge. For
static experiments, it is possible to train as a continuous task but evaluate the model only at a single
timepoint per admission (thereby converting it to a static task); however, we found that performance
was higher when both training and evaluation were static tasks. Mortality models were trained using
2-, 7-, 30- and 90-d lookahead windows as well as a variable lookahead for in-hospital mortality.
Remaining LoS was modeled with 2- and 7-d cutoffs; readmission used a 30-d lookahead from the
time of discharge.

Adjustments to Step 6 (auxiliary tasks)
For the mortality and LoS tasks, a panel of 14 laboratory tests was identified (extending the seven
auxiliary tasks used for AKI, but within the scope of the available de-identified laboratory values):
hemoglobin, white blood cell count, platelets, C-reactive protein, international normalized ratio,
serum protein, albumin, glucose, creatinine, urea nitrogen, potassium, sodium, chloride and pH. We
swept across multiple auxiliary configurations, varying the combination of aggregating functions

Table 2 | Time estimates for development and execution of protocol steps

Development Execution

Problem definition (Steps 1–6) Variable –

Data pre-processing (Steps 7–16) 4–12 weeks 6–48 h

Model architecture (Steps 17–25) 2–8 weeks 1–4 d for each hyperparameter sweep

Calibration and uncertainty (Steps 26–29) 2–4 weeks 2–6 d

Generalizability evaluation (Steps 30–33) 2–4 weeks 4–8 d
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(maximum, minimum, mean and standard deviation) and the combination of lookahead horizons
(ranging from 6 to 72 h). In all cases, auxiliary regressions were combined to give a single loss. Where
a particular laboratory value was not measured, the loss was set to zero. For consistency, the setup of
auxiliary tasks was kept constant for all time formulations of mortality and LoS, although auxiliary
lookaheads could readily be customized. The intuition for keeping 48 h was to capture the pattern of
daily physiological trends for that patient even when modeling much longer-term clinical outcomes
(e.g., 30-d mortality). No auxiliaries were used for the 30-d readmission task because this was
triggered only at the time of discharge.

Adjustments to Step 21 (hyperparameter sweeps)
The highest-performing hyperparameter configurations were as follows. Continuous mortality in
admission without auxiliaries, static mortality without auxiliaries and static mortality with auxiliaries
used an initial learning rate of 0.0001. All other tasks used an initial learning rate of 0.001. Learning
rate was decayed every 12,000 steps by a factor of 0.85, with a batch size of 128 and a back-
propagation-through-time window of 128. Lookup-embedding size varied from 200 to 400 depending
on the task, with constant embedding layers of size 400 each for numerical and presence features. The
RNN consisted of a three-layer stacked LSTM with highway connections and cell size 300.

Results for additional endpoints
Tables 3 and 4 summarize the results obtained for the three additional endpoints: mortality, LoS and
30-d readmission. For the continuous mortality prediction, AUPRC for the RNN with auxiliary tasks
ranged from 38.3% for a 48-h lookahead window to 73.8% for 90-day mortality, with AUROC of
98.6% and 95.6%, respectively. These results compare favorably to literature benchmarks for mortality
prediction, although performance comparisons are difficult across datasets and experimental for-
mulations. A recent literature review of ML models in intensive care identified 70 papers predicting
mortality83; however, only a small subset of these used deep-learning approaches, and even fewer
were designed for continuous predictions. Supplementary Table 1 provides a summary of selected ML
papers predicting inpatient mortality84–90. Harutyunyan et al.33,45 is one of the only studies to show
results for continuous mortality predictions, specifically hourly prediction of mortality within 24 h
(which the authors refer to as ‘physiologic decompensation’), showing AUPRC of 31.7% and AUROC
of 90.5% on a dataset with a significantly higher in-hospital mortality rate than the VA dataset (10.5%
in their cohort from the Medical Information Mart for Intensive Care (MIMIC-III) dataset91 com-
pared with 2.1% in the VA dataset). In a related experiment, Johnson and Mark4 simulated a real-
time/continuous prediction task by training a gradient-boosting model on MIMIC-III to predict in-
hospital mortality at a random timepoint, with AUPRC of 66.5% and AUROC of 92.0%. More
literature benchmarks exist for static formulations—most commonly, prediction of in-hospital
mortality at 24 and 48 h after admission. Our performance exceeds that reported on MIMIC-III
structured data elsewhere in the literature4,33,45, with the exception of Puroshotham et al.34 on a
feature set of 135 raw features and the use of a multimodal RNN (AUPRC of 78.6% and AUROC of
94.1% for in-hospital mortality at 24 h). A recent study by Brajer et al.92 prospectively and externally
validated a model for predicting in-hospital mortality at the time of admission, with AUPRC and
AUROC of 29% and 87%, respectively, on retrospective validation and 14% and 86%, respectively, on
prospective validation.

Performance for remaining LoS (AUPRC of 93.3% and AUROC of 84.3% for LoS <7 d at 24 h after
admission) and 30-d readmission (AUPRC of 50.1% and AUROC of 80.8%) also compare favorably
to literature benchmarks—with Rajkomar et al.20 reporting AUROC of ≤86% for predicting total LoS
>7 d at 24 h after admission and AUROC of 77% for 30-d readmission by training over both
structured data and notes. Jamei et al.93 used an MLP to predict all-cause 30-d hospital readmission
and showed AUROC of 78%. Hilton et al.94 reported AUPRC and AUROC of 38.3% and 75.8%,
respectively, on 30-d readmission, with a comparable outcome prevalence to our dataset of 14.2%.

We observed a modest performance uplift from the addition of auxiliary tasks, with static for-
mulations for mortality and LoS showing a 1–2% increase in mean AUPRC, with preserved or
increased AUROC. For continuous formulations, the performance uplift from auxiliaries was con-
sistent but small (0–1% AUPRC gain) compared with the 3.1% AUPRC uplift for the AKI task
observed in Tomasev et al.15 A different panel of auxiliary endpoints, more closely tied to the primary
outcome, might improve performance. Flexible approaches to automatically identify the optimal set
of auxiliary tasks are beginning to emerge and could potentially be applied95.
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Across all tasks and time formulations, the deep-learning models trained using the above protocol
outperformed baseline models (logistic regression and XGBoost). It has been suggested that per-
formance on these canonical tasks saturates with simpler models45. These results suggest that there
can still be significant gains in discriminative performance from deep architectures; however, the
marginal benefit may be higher for more complex clinical predictions.

Further examples of the types of results that can be obtained are in Fig. 7, which shows PR and
ROC curves for mortality in a 48-h model, annotated with multiple OPs (Step 29) for which the
performance is further detailed in Table 5. At an OP of 33% (one true positive to two false positives),
71.2% of deaths were predicted early within a window of up to 48 h in advance (episode-level
sensitivity). The shortcoming of episode-level sensitivity is that it does not account for the timeliness
of predictions. To better visualize this, Fig. 8 shows early prediction histograms for various OPs,
demonstrating that performance is highest closest to the time of event.

Table 3 | Continuous tasks: model performance for continuous (i.e., regularly triggered) prediction tasks with variable
lookahead windows

Task Triggering Timestep
prevalence (%)

Model AUPRC (95%
CI) (%)

AUROC (95%
CI) (%)

Mortality in 48 h 6-hourly 0.42 LR 11.2 (10.6, 11.8) 91.1 (90.7, 91.4)

XGBoost 17.2 (16.2, 18.2) 94.1 (93.9, 94.3)

RNN 37.4 (36.4, 38.3) 98.6 (98.5, 98.7)

RNN with
auxiliaries

38.3 (37.4, 39.5) 98.6 (98.6, 98.7)

Mortality in 7 d 6-hourly 1.46 LR 19.7 (18.9, 20.5) 89.5 (89.2, 89.9)

XGBoost 25.9 (25.0, 26.9) 92.4 (92.1, 92.7)

RNN 52.0 (51.1, 53.1) 97.9 (97.8, 98.0)

RNN with
auxiliaries

52.8 (51.8, 53.9) 98.0 (97.9, 98.1)

Mortality in 30 d 6-hourly 4.7 LR 32.5 (31.5, 33.5) 87.5 (87.1, 87.8)

XGBoost 38.1 (37.1, 39.2) 90.0 (89.7, 90.7)

RNN 66.8 (65.9, 67.9) 96.8 (96.6, 96.9)

RNN with
auxiliaries

67.7 (66.6, 68.8) 96.9 (96.7, 97.0)

Mortality in 90 d 6-hourly 9.0 LR 41.5 (40.6, 42.4) 85.9 (85.5, 86.4)

XGBoost 47.1 (46.0, 48.2) 88.3 (88.0, 88.7)

RNN 73.5 (72.6, 74.6) 95.5 (95.3, 95.7)

RNN with
auxiliaries

73.8 (72.6, 74.7) 95.6 (95.3, 95.8)

Mortality in
admission

6-hourly 4.9 LR 27.5 (25.5, 29.1) 86.2 (85.2, 87.4)

XGBoost 30.3 (28.2, 32.2) 87.3 (85.5, 89.1)

RNN 63.5 (59.0, 67.0) 95.8 (94.8, 96.9)

RNN with
auxiliaries

64.5
(60.0, 68.8)

93.2 (89.7, 97.0)

Remaining LoS
≤2 d

6-hourly 19.9 LR 44.1 (43.8, 44.4) 78.7 (78.4, 79.0)

XGBoost 50.5 (50.3, 50.8) 81.5 (81.2, 81.7)

RNN 69.3 (69.1, 69.5) 90.0 (89.8, 90.1)

RNN with
auxiliaries

70.0
(69.8, 70.2)

90.2 (90.0, 90.3)

Remaining LoS
≤7 d

6-hourly 40.7 LR 73.4 (73.0, 73.7) 81.2 (80.9, 81.4)

XGBoost 76.8 (76.5, 77.1) 83.2 (82.9, 83.4)

RNN 86.2 (86.0, 86.4) 90.2 (90.0, 90.4)

RNN with
auxiliaries

86.4 (86.2, 86.6) 90.3 (90.1, 90.5)

A comparison is made between two baseline models (LR and XGBoost) and the deep recurrent architecture with and without auxiliary tasks. Outcome prevalence is the percentage of the positive
class in the test set (timestep-level prevalence). CI, confidence interval; LR, logistic regression.
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Further research is required to prepare models for clinical deployment and evaluate them pro-
spectively. It is important to note that mortality risk models may have unintended consequences if
actively deployed in real-world settings, including pathological feedback loops96. For example, a
model may suggest removal of care for patients with a high mortality risk, in turn providing con-
firmatory training data for the original risk. We emphasize that any live deployment of a mortality
prediction model must undergo thorough ethical review and multiple stages of user-experience
research and safety evaluation. We refer the reader to refs. 14,96,97 for a more rigorous review of
deployment considerations.

Conclusions
This protocol offers a versatile framework to develop deep-learning models for a range of clinical and
operational use cases. We demonstrate that the architecture developed via this protocol generalizes
well beyond AKI prediction, with strong performance across a range of endpoints including inpatient
mortality, LoS and readmission prediction. We stress that these models are intended as prototypes for
illustrating methods rather than as clinical-grade systems. Further work is required in framing
appropriate clinical use cases and deploying ML models in real-world settings via prospective
implementation research.

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Table 4 | Static tasks: model performance for static prediction tasks (i.e., triggered at a fixed point after admission)

Task Trigger time Outcome
prevalence (%)

Model AUPRC
(95% CI) (%)

AUROC
(95% CI) (%)

Mortality in admission 24 h after admission 2.0 LR 32.7 (31.4, 34.1) 94.1 (93.8, 94.3)

XGBoost 40.8 (39.1, 42.5) 95.7 (95.5, 95.8)

RNN 55.0 (53.4, 56.3) 97.6 (97.4, 97.7)

RNN with auxiliaries 56.7 (55.3, 58.4) 97.8 (97.7, 98.0)

Mortality in admission 48 h after admission 2.7 LR 23.9 (22.6, 25.0) 88.1 (87.7, 88.5)

XGBoost 31.1 (29.8, 32.5) 91.2 (90.9, 91.5)

RNN 58.6 (56.9, 60.1) 97.2 (97.1, 97.4)

RNN with auxiliaries 60.8 (59.2, 62.2) 97.5 (97.4, 97.7)

Remaining LoS ≤2 d 24 h after admission 47.5 LR 55.3 (54.9, 55.8) 69.1 (68.8, 69.4)

XGBoost 59.5 (59.1, 59.9) 72.9 (72.6, 73.1)

RNN 73.9 (73.5, 74.3) 82.0 (81.8, 82.2)

RNN with auxiliaries 74.7 (74.4, 75.0) 82.6 (82.4, 82.7)

Remaining LoS ≤2 d 48 h after admission 38.9 LR 50.5 (50.0, 50.9) 67.2 (66.9, 67.5)

XGBoost 55.9 (55.4, 56.4) 71.9 (71.6, 72.2)

RNN 71.4 (70.9, 71.7) 81.3 (81.0, 81.5)

RNN with auxiliaries 72.1 (71.7, 72.5) 81.9 (81.6, 82.1)

Remaining LoS ≤7 d 24 h after admission 78.1 LR 86.4 (86.1, 86.6) 72.2 (71.8, 72.5)

XGBoost 88.4 (88.2, 88.6) 75.8 (75.6, 76.1)

RNN 93.1 (92.9, 93.2) 83.9 (83.7, 84.1)

RNN with auxiliaries 93.3 (93.2, 93.5) 84.3 (84.1, 84.5)

Remaining LoS ≤7 d 48 h after admission 72.0 LR 83.1 (82.8, 83.5) 70.8 (70.4, 71.2)

XGBoost 85.7 (85.4, 86.0) 74.8 (74.5, 75.1)

RNN 91.7 (91.5, 91.8) 83.4 (83.2, 83.7)

RNN with auxiliaries 91.9 (91.7, 92.1) 83.8 (83.6, 84.1)

Readmission in 30 d Discharge 18.7 LR 30.2 (29.6, 30.7) 65.4 (65.0, 65.8)

XGBoost 32.4 (31.8, 33.0) 67.1 (66.8, 67.4)

RNN 50.1 (49.1, 50.9) 80.8 (80.5, 81.1)

A comparison is made between two baseline models (LR and XGBoost) and the deep recurrent architecture with and without auxiliary tasks. Outcome prevalence is the percentage of the positive
class in the test set.
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Data availability
The clinical data used for the training, validation and test sets were collected at the VA and trans-
ferred to a secure data center with strict access controls in de-identified format. Data were used with
both local and national permissions. The dataset is not publicly available, and restrictions apply to its
use. The full results from the evaluation of our AKI model can be found in Tomasev et al15.
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Fig. 7 | Continuous prediction of mortality in 48 h. Receiver operating characteristic (a) and precision–recall (b)
curves for the risk of mortality in 48 h. Blue dots represent different model OPs on the validation set. GBT, gradient
boosted tree.

Table 5 | OPs for mortality in a 48-h model: percentage of mortality events detected up to 48 h
ahead of time at varying true-positive (TP) to false-positive (FP) OPs

Precision (%) TP:FP ratio Recall (95% CI) (%)

20 1:4 70.6 (69.6, 71.6)

33 1:2 52.1 (51.0, 53.2)

50 1:1 31.2 (30.2, 32.2)

66 2:1 15.3 (14.6, 16.0)
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Fig. 8 | Early prediction histogram for mortality in 48 h. Model performance at timesteps before mortality. Error
bars show bootstrap pivotal 95% confidence intervals; n = 200). The boxed area shows the upper limit on possible
predictions for each time window.
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Code availability
Code is available at https://github.com/google/ehr-predictions. This example code illustrates the core
components of the continuous prediction architecture, task configuration and auxiliary heads. The
full data pre-processing pipeline is not included here because it is highly specific to this dataset.
However, we do include synthetic examples of the pre-processing stages with an accompanying data-
reading notebook. We believe this exemplar code can be appropriately customized to other EHR
datasets and tasks.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection was performed by independent members of the VA National Data Center without involvement from research team 
members. Collection was performed using the Vista EHR system and associated databases.

Data analysis The networks used the TensorFlow library with custom extensions. Analysis was performed with custom code written in Python 2.7. 
Please see the manuscript methods section for more detail.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The clinical data used for the training, validation and test sets were collected at the US Department of Veterans Affairs and transferred to a secure data centre with 
strict access controls in de-identified format. Data were used with both local and national permissions. They are not publicly available and restrictions apply to their 
use. The de-identified dataset, or a test subset, may be available from the US Department of Veterans Affairs subject to local and national ethical approvals.



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The dataset consisted of all eligible patients during a five year period across the entire VA healthcare system in the USA. The 
test population was a random selection of 10% of these, totaling 70,681 individual patients and 252,492 unique admissions 
(please refer to methods section for more details on how test populations were selected). A sample size requirement of 179 
patients would be required to detect sensitivity and specificity at 0.05 marginal error and 95% confidence. The total number of 
test patients exceeded this requirement by two orders of magnitude.

Data exclusions We excluded patients below the age of 18 and above the age of 90 in accordance with HIPAA Safe Harbor criteria, and patients 
without any serum creatinine recorded in EHR. (See paper methods for more detail.) To protect patient privacy sites with fewer 
than 250 admissions during the five year time period were also excluded; four of the 1,243 health care facilities from which the 
VA is composed were excluded based on this criteria. All exclusion criteria were established prior to beginning the work.

Replication All 70,681 patients in the test set were randomly selected and were not correlated in any way. The experiments can be 
interpreted as 70,681 replicas of the model applied to a single patient over a fifteen year period.

Randomization The data were randomly divided into training (80% of observations), validation (5%), calibration (5%) and testing (10%) sets. All 
data for a single patient was assigned to exactly one of these splits. (See paper methods for more detail.)

Blinding When assigning patients randomly to test, validation and training groups investigators were blinded to patient covariates and all 
features in the EHR not required to perform the research (e.g., creatinine was required to label AKI as a ground truth). Patient 
recruitment was conducted by independent members of the VA National Data Center; research team members were blinded to 
this recruitment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The data included all VA patients aged between 18 and 90 admitted for secondary care to medical or surgical services between 
10/1/2011 to 9/30/2015, with laboratory data that included serum creatinine recorded in EHR and with at least one year of EHR 
data prior to admission data. The test set was a randomly selected 10% of all admissions included in the work. Average age was 
62.3. Males represented 93.6% of the test population. Average number of inpatient admissions was 3.6; average admission 
duration was 9.6 days. AKI occurred in 13.4% of admissions. These figures were consistent with the population of the VA as a 
whole.

Recruitment The data was recruited from the US Department of Veterans Affairs (VA). The VA is composed of 1,243 health care facilities, 
including 172 VA Medical Centers and 1,062 outpatient sites of care. Aggregating data from one or more of these facilities are 
130 data centres, of which 114 had data for inpatient admissions used in this study. Four sites were excluded due to small 
numbers of patients: fewer than 250 admissions during the fifteen year time period. No other patients were excluded based on 
location, and no other exclusion criteria were applied. The final dataset consisted of the records for all 703,782 patients that met 
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inclusion and exclusion criteria.

Ethics oversight This work, and the collection of data on implied consent, received Tennessee Valley Healthcare System Institutional Review 
Board (IRB) approval from the US Department of Veterans Affairs. De-identification was performed in line with the Health 
Insurance Portability and Accountability Act (HIPAA), and validated by the US Department of Veterans Affairs Central Database 
and Information Governance departments. Only de-identified retrospective data was used for research, without the active 
involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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