Publications

As of October 2024:

  • 8800+ citations
  • h-index 16
  • 40+ publications
  • 3 patents

Most of my publications are also available on my Google Scholar profile.

2023

  1. arXiv
    Opportunities and Risks of LLMs for Scalable Deliberation with Polis
    Christopher T Small, Ivan Vendrov, Esin Durmus, Hadjar Homaei, Elizabeth Barry, Julien Cornebise, Ted Suzman, Deep Ganguli, and Colin Megill
    arXiv preprint arXiv:2306.11932, 2023

2022

  1. NeurIPS
    Open High-Resolution Satellite Imagery: The WorldStrat Dataset–with Application to Super-Resolution
    Julien Cornebise, Ivan Oršolić, and Freddie Kalaitzis
    Advances in Neural Information Processing Systems (NeurIPS 2022), 2022
  2. Zenodo
    The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution
    Julien Cornebise, Ivan Oršolić, and Freddie Kalaitzis
    2022

2021

  1. Nature Protocols
    Use of Deep Learning to Develop Continuous-Risk Models for Adverse Event Prediction from Electronic Health Records
    Nenad Tomašev, Natalie Harris, Sebastien Baur, Anne Mottram, Xavier Glorot, Jack W. Rae, Michal Zielinski, Harry Askham, Andre Saraiva, Valerio Magliulo, Clemens Meyer, Suman Ravuri, Ivan Protsyuk, Alistair Connell, Cían O. Hughes, Alan Karthikesalingam, Julien Cornebise, Hugh Montgomery, Geraint Rees, Chris Laing, Clifton R. Baker, Thomas F. Osborne, Ruth Reeves, Demis Hassabis, Dominic King, Mustafa Suleyman, Trevor Back, Christopher Nielson, Martin G. Seneviratne, Joseph R. Ledsam, and Shakir Mohamed
    Nature Protocols, 2021

2020

  1. arXiv
    HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery
    Michel Deudon, Alfredo Kalaitzis, Israel Goytom, Md Rifat Arefin, Zhichao Lin, Kris Sankaran, Vincent Michalski, Samira E Kahou, Julien Cornebise, and Yoshua Bengio
    arXiv preprint arXiv:2002.06460, 2020
  2. Nature Comm
    AI for Social Good: Unlocking the Opportunity for Positive Impact
    Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Picciariello, Bec Connelly, Danielle C. M. Belgrave, Daphne Ezer, Fanny Cachat Van Der Haert, Frank Mugisha, Gerald Abila, Hiromi Arai, Hisham Almiraat, Julia Proskurnia, Kyle Snyder, Mihoko Otake-Matsuura, Mustafa Othman, Tobias Glasmachers, Wilfried De Wever, Yee Whye Teh, Mohammad Emtiyaz Khan, Ruben De Winne, Tom Schaul, and Claudia Clopath
    Nature Communications, 2020

2019

  1. arXiv
    DECoVaC: Design of Experiments with Controlled Variability Components
    Thomas Boquet, Laure Delisle, Denis Kochetkov, Nathan Schucher, Parmida Atighehchian, Boris Oreshkin, and Julien Cornebise
    2019
  2. NeurIPS Workshop
    Objects of Violence: Synthetic Data for Practical ML in Human Rights Investigations
    Lachlan Kermode, Jan Freyberg, Alican Akturk, Robert Trafford, Denis Kochetkov, Rafael Pardinas, Eyal Weizman, and Julien Cornebise
    In NeurIPS 2019 Joint Workshop on AI for Social Good, 2019
  3. NeurIPS Workshop
    A Large-Scale Crowdsourced Analysis of Abuse against Women Journalists and Politicians on Twitter
    Laure Delisle, Alfredo Kalaitzis, Krzysztof Majewski, Archy de Berker, Milena Marin, and Julien Cornebise
    In NeurIPS 2019 Joint Workshop on AI for Social Good, 2019
  4. Nature
    A Clinically Applicable Approach to Continuous Prediction of Future Acute Kidney Injury
    Nenad Tomašev, Xavier Glorot, Jack W. Rae, Michal Zielinski, Harry Askham, Andre Saraiva, Anne Mottram, Clemens Meyer, Suman Ravuri, Ivan Protsyuk, Alistair Connell, Cían O. Hughes, Alan Karthikesalingam, Julien Cornebise, Hugh Montgomery, Geraint Rees, Chris Laing, Clifton R. Baker, Kelly Peterson, Ruth Reeves, Demis Hassabis, Dominic King, Mustafa Suleyman, Trevor Back, Christopher Nielson, Joseph R. Ledsam, and Shakir Mohamed
    Nature, 2019
  5. ICLR Workshop
    Reproducibility and Stability Analysis in Metric-Based Few-Shot Learning.
    Thomas Boquet, Laure Delisle, Denis Kochetkov, Nathan Schucher, Boris N. Oreshkin, and Julien Cornebise
    In ICLR Workshop on Reproducibility in Machine Learning, 2019
  6. ICLR Workshop
    Planning with Latent Simulated Trajectories
    Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Julien Cornebise, and Chris Pal
    In Proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at ICLR 2019, 2019

2018

  1. NeurIPS Workshop
    Witnessing Atrocities: Quantifying Villages Destruction in Darfur with Crowdsourcing and Transfer Learning
    Julien Cornebise, Daniel Worrall, Micah Farfour, and Milena Marin
    In Proc. AI for Social Good NeurIPS2018 Workshop, NeurIPS’18, 2018
  2. Nature Med
    Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease
    Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, George Van Den Driessche, Balaji Lakshminarayanan, Clemens Meyer, Faith Mackinder, Simon Bouton, Kareem Ayoub, Reena Chopra, Dominic King, Alan Karthikesalingam, Cían O. Hughes, Rosalind Raine, Julian Hughes, Dawn A. Sim, Catherine Egan, Adnan Tufail, Hugh Montgomery, Demis Hassabis, Geraint Rees, Trevor Back, Peng T. Khaw, Mustafa Suleyman, Julien Cornebise, Pearse A. Keane, and Olaf Ronneberger
    Nature medicine, 2018
  3. Patent
    Generalizable Medical Image Analysis Using Segmentation and Classification Neural Networks
    Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, and Julien Cornebise
    2018

2017

  1. F1000Research
    Automated Analysis of Retinal Imaging Using Machine Learning Techniques for Computer Vision
    Jeffrey De Fauw, Pearse Keane, Nenad Tomasev, Daniel Visentin, George Driessche, Mike Johnson, Cian O. Hughes, Carlton Chu, Joseph Ledsam, Trevor Back, Tunde Peto, Geraint Rees, Hugh Montgomery, Rosalind Raine, Olaf Ronneberger, and Julien Cornebise
    F1000Research, 2017

2016

  1. F1000Research
    Applying Machine Learning to Automated Segmentation of Head and Neck Tumour Volumes and Organs at Risk on Radiotherapy Planning CT and MRI Scans
    Carlton Chu, Jeffrey De Fauw, Nenad Tomasev, Bernardino Romera Paredes, Cían Hughes, Joseph Ledsam, Trevor Back, Hugh Montgomery, Geraint Rees, Rosalind Raine, Kevin Sullivan, Syed Moinuddin, Derek D’Souza, Olaf Ronneberger, Ruheena Mendes, and Julien Cornebise
    F1000Research, 2016
  2. Proceedings
    Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings
    Gustavo Carneiro, Diana Mateus, Loïc Peter, Andrew Bradley, João Manuel RS Tavares, Vasileios Belagiannis, João Paulo Papa, Jacinto C. Nascimento, Marco Loog, Zhi Lu, Jaime S Caroso, and Julien Cornebise
    2016

2015

  1. arXiv
    Approximate Hubel-Wiesel Modules and the Data Structures of Neural Computation
    Joel Z Leibo, Julien Cornebise, Sergio Gómez, and Demis Hassabis
    arXiv preprint arXiv:1512.08457, 2015
  2. ICML
    Weight Uncertainty in Neural Network
    Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra
    In International Conference on Machine Learning, 2015

2014

  1. StatComp
    Adaptive Sequential Monte Carlo by Means of Mixture of Experts
    Julien Cornebise, Eric Moulines, and Jimmy Olsson
    Statistics and Computing, 2014
  2. Book chapter
    Chapter 12: Inference for Nonlinear State Space Models Particle
    Randal Douc, Eric Moulines, and Julien Cornebise
    In Nonlinear Time Series: Theory, Methods and Applications with R Examples, 2014
  3. Book chapter
    Chapter 10: Particle Filtering
    Randal Douc, Eric Moulines, and Julien Cornebise
    In Nonlinear Time Series: Theory, Methods and Applications with R Examples, 2014
  4. Book chapter
    Chapter 11: Particle Smoothing
    Randal Douc, Eric Moulines, and Julien Cornebise
    In Nonlinear Time Series: Theory, Methods and Applications with R Examples, 2014
  5. Patent
    Recommending Content Using Neural Networks
    Charles Blundell, and Julien Cornebise
    2014

2013

  1. StatMed
    Adaptive Markov Chain Monte Carlo Forward Projection for Statistical Analysis in Epidemic Modelling of Human Papillomavirus
    Igor A Korostil, Gareth W Peters, Julien Cornebise, and David G Regan
    Statistics in medicine, 2013
  2. Patent
    Signal Processing Systems
    Julien Cornebise, Danilo Jimenez Rezende, and Daniël Pieter Wierstra
    2013

2012

  1. JRSSB Comment
    Some Discussions of D. Fearnhead and D. Prangle’s Read Paper “Constructing Summary Statistics for Approximate Bayesian Computation: Semi-Automatic Approximate Bayesian Computation”
    Christophe Andrieu, Simon Barthelmé, Nicolas Chopin, Julien Cornebise, Arnaud Doucet, Mark Girolami, Ioannis Kosmidis, Ajay Jasra, Anthony Lee, Jean-Michel Marin, Pierre Pudlo, Christian P. Robert, Mohammed Sedki, and Sumeetpal S. Singh
    Journal of the Royal Statistical Society: Series B, 2012

2011

  1. JRSSB Comment
    RMHMC for unidentifiable models: Discussion on “Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods” by M. Girolami and B. Calderhead
    Luke Bornn, and Julien Cornebise
    Journal of the Royal Statistical Society: Series B, 2011
  2. JRSSB Comment
    On Adaptive Monte Carlo: Discussion on “Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods” by M. Girolami and B. Calderhead
    Julien Cornebise, and Gareth W Peters
    Journal of the Royal Statistical Society: Series B, 2011
  3. SAGMB
    On Optimality of Kernels for Approximate Bayesian Computation Using Sequential Monte Carlo
    Sarah Filippi, Chris P. Barnes, Julien Cornebise, and Michael P.H. Stumpf
    Statistical Applications in Genetics and Molecular Biology, 2011
  4. SSP
    A Comparative Study of Monte-Carlo Methods for Multitarget Tracking
    François Septier, Julien Cornebise, Simon Godsill, and Yves Delignon
    In 2011 IEEE Statistical Signal Processing Workshop (SSP), 2011

2010

  1. JRSSB Comment
    Discussion on the Paper by Andrieu, Doucet, and Holenstein
    Julien Cornebise, and Gareth W Peters
    Journal of the Royal Statistical Society: Series B, 2010
  2. NeurIPS Workshop
    Field Report: Adaptive Particle MCMC for Mixed Effect Models and Stochastic Differential Equations
    Julien Cornebise, Gareth W Peters, and Arnaud Doucet
    In NIPS 2010 Workshop on Monte Carlo Methods, 2010
  3. JRSSB Comment
    Discussion on the Paper by Andrieu, Doucet, and Holenstein
    Gareth W Peters, and Julien Cornebise
    Journal of the Royal Statistical Society: Series B, 2010

2009

  1. PhD Manuscript
    Méthodes de Monte Carlo Séquentielles Adaptatives
    Julien Cornebise
    Université Pierre et Marie Curie, 2009

2008

  1. StatComp
    Adaptive Methods for Sequential Importance Sampling with Application to State Space Models
    Julien Cornebise, Éric Moulines, and Jimmy Olsson
    Statistics and Computing, 2008
  2. EUSIPCO
    Adaptive Methods for Sequential Importance Sampling with Application to State Space Models
    Julien Cornebise, Eric Moulines, and Jimmy Olsson
    In 16th European Signal Processing Conference (EUSIPCO 2008), 2008

2006

  1. SFDS
    Planification d’expérience Optimale et Équations Différentielles : Révision Des Bases et Méthodologie
    Julien Cornebise, and Bruno Boulanger
    In Actes Des 38èmes Journées de Statistique de La SFDS, 2006

2005

  1. IGARSS
    A Meteosat Second Generation Receiving, Processing and Storing Images System Developed by Engineer Students
    Laurent Beaudoin, Louis-Aurélien Charbardès, Julien Cornebise, Christophe Dufour, Konrad Florczak, François Gachot, and Pierre Schott
    In IGARSS, 2005
  2. ASMDA
    A Practical Implementation of the Gibbs Sampler for Mixture of Distributions: Application to the Determination of Specifications in Food Industry
    Julien Cornebise, Myriam Maumy, and Philippe Girard
    In International Symposium on Applied Stochastic Models and Data Analysis, 2005